文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

用于食品安全检测的纳米酶催化进展:关于进展与挑战的全面综述

Advances in Nanozyme Catalysis for Food Safety Detection: A Comprehensive Review on Progress and Challenges.

作者信息

Yang Renqing, Liu Zeyan, Chen Haili, Zhang Xinai, Sun Qing, El-Mesery Hany S, Lu Wenjie, Dai Xiaoli, Xu Rongjin

机构信息

School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, China.

Faculty of Agricultural Engineering, Jiangsu University, Zhenjiang 212013, China.

出版信息

Foods. 2025 Jul 23;14(15):2580. doi: 10.3390/foods14152580.


DOI:10.3390/foods14152580
PMID:40807517
原文链接:https://pmc.ncbi.nlm.nih.gov/articles/PMC12345733/
Abstract

The prosperity of enzyme-mimicking catalysis has promoted the development of nanozymes with diversified activities, mainly including catalase-like, oxidase-like, peroxidase-like, and superoxide dismutase-like characteristics. Thus far, the reported nanozymes can be roughly divided into five categories, comprising noble metals, metal oxides, carbon-based nanostructures, metal-organic frameworks, and covalent organic frameworks. This review systematically summarizes the research progress of nanozymes for improving catalytic activity toward sensing applications in food safety monitoring. Specifically, we highlight the unique advantages of nanozymes in enhancing the performance of colorimetric, fluorescence, and electrochemical sensors, which are crucial for detecting various food contaminants. Moreover, this review addresses the challenges faced in food safety detection, such as the need for high sensitivity, selectivity, and stability under complex food matrices. Nanozymes offer promising solutions by providing robust catalytic activity, adjustable enzyme-like properties, and excellent stability, even in harsh environments. However, practical implementation challenges remain, including the need for a deeper understanding of nanozyme catalytic mechanisms, improving substrate selectivity, and ensuring long-term stability and large-scale production. By focusing on these aspects, this review aims to provide a comprehensive overview of the current state of nanozyme-based sensors for food safety detection and to inspire future research directions.

摘要

模拟酶催化的蓬勃发展推动了具有多种活性的纳米酶的开发,这些活性主要包括类过氧化氢酶、类氧化酶、类过氧化物酶和类超氧化物歧化酶特性。迄今为止,报道的纳米酶大致可分为五类,包括贵金属、金属氧化物、碳基纳米结构、金属有机框架和共价有机框架。本文综述系统总结了纳米酶在食品安全监测传感应用中提高催化活性的研究进展。具体而言,我们强调了纳米酶在增强比色、荧光和电化学传感器性能方面的独特优势,这些对于检测各种食品污染物至关重要。此外,本文综述还讨论了食品安全检测中面临的挑战,例如在复杂食品基质下对高灵敏度、选择性和稳定性的需求。纳米酶通过提供强大的催化活性、可调节的类酶特性以及即使在恶劣环境下也具有出色的稳定性,提供了有前景的解决方案。然而,实际应用挑战仍然存在,包括需要更深入了解纳米酶催化机制、提高底物选择性以及确保长期稳定性和大规模生产。通过关注这些方面,本文综述旨在全面概述基于纳米酶的食品安全检测传感器的当前状态,并激发未来的研究方向。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a1e8/12345733/87c9edf8ffec/foods-14-02580-g010.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a1e8/12345733/2a4c4b44c4ab/foods-14-02580-g011.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a1e8/12345733/b82548d5dae5/foods-14-02580-g001.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a1e8/12345733/20801eb4912e/foods-14-02580-g002.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a1e8/12345733/a06ad7d3a25b/foods-14-02580-g003.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a1e8/12345733/cf2a9dd51214/foods-14-02580-g004.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a1e8/12345733/df918efb513e/foods-14-02580-g005.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a1e8/12345733/2e399f9eec33/foods-14-02580-g006.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a1e8/12345733/7c11cfe49b8a/foods-14-02580-g007.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a1e8/12345733/7fa18fbffb17/foods-14-02580-g008.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a1e8/12345733/777597a4c571/foods-14-02580-g009.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a1e8/12345733/87c9edf8ffec/foods-14-02580-g010.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a1e8/12345733/2a4c4b44c4ab/foods-14-02580-g011.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a1e8/12345733/b82548d5dae5/foods-14-02580-g001.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a1e8/12345733/20801eb4912e/foods-14-02580-g002.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a1e8/12345733/a06ad7d3a25b/foods-14-02580-g003.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a1e8/12345733/cf2a9dd51214/foods-14-02580-g004.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a1e8/12345733/df918efb513e/foods-14-02580-g005.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a1e8/12345733/2e399f9eec33/foods-14-02580-g006.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a1e8/12345733/7c11cfe49b8a/foods-14-02580-g007.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a1e8/12345733/7fa18fbffb17/foods-14-02580-g008.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a1e8/12345733/777597a4c571/foods-14-02580-g009.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a1e8/12345733/87c9edf8ffec/foods-14-02580-g010.jpg

相似文献

[1]
Advances in Nanozyme Catalysis for Food Safety Detection: A Comprehensive Review on Progress and Challenges.

Foods. 2025-7-23

[2]
Recent advances in nanozymes based on mesoporous materials for enhancing the performance of colorimetric biosensors: Applications and challenges.

Nanoscale. 2025-7-22

[3]
Prescription of Controlled Substances: Benefits and Risks

2025-1

[4]
Biodegradable enzyme-mimicking nanocatalysts: From degradation behavior to theranostic applications.

Acta Biomater. 2025-8

[5]
Nanozyme-based biosensors for food contaminants detection: advances, challenges, and prospects.

Talanta. 2025-12-1

[6]
Carbon-based nanozymes: catalytic mechanisms, performance tuning, and environmental and biomedical applications.

Anal Methods. 2025-8-7

[7]
Nanozymes in infected wound therapy: catalytic mechanisms, rational design and combination therapy.

Acta Biomater. 2025-8-5

[8]
pH-Switchable Multi-Enzyme-Mimicking via Liquid Metal Nanozyme.

Small. 2025-7

[9]
Nanozymes: Classification and Analytical Applications - A Review.

J Fluoresc. 2024-9-13

[10]
Covalent and Strong Metal-Support Interactions for Robust Single-Atom Catalysts.

Acc Chem Res. 2025-7-15

本文引用的文献

[1]
Electrochemical Sensing toward Noninvasive Evaluation of High-Starch Food Digestion via Point-of-Use Monitoring Glucose Level in Saliva.

J Agric Food Chem. 2025-5-7

[2]
Recent Advances in Food Safety: Nanostructure-Sensitized Surface-Enhanced Raman Sensing.

Foods. 2025-3-24

[3]
Pre-ligand-induced porous MOF as a peroxidase mimic for electrochemical analysis of deoxynivalenol (DON).

Food Chem. 2025-7-15

[4]
Lemon-derived carbon quantum dots incorporated guar gum/sodium alginate films with enhanced the preservability for blanched asparagus active packaging.

Food Res Int. 2025-2

[5]
Construction of functional covalent organic framework films by modulator and solvent induced polymerization.

Nat Commun. 2025-1-31

[6]
Dual-mode strategy for the determination of vanillin in milk-based products based on molecular-imprinted nanozymes.

Food Chem. 2025-3-30

[7]
Innovative quantum dots-based SERS for ultrasensitive reporting of contaminants in food: Fundamental concepts and practical implementations.

Food Chem. 2025-3-1

[8]
Simple-easy electrochemical sensing mode assisted with integrative carbon-based gel electrolyte for in-situ monitoring of plant hormone indole acetic acid.

Food Chem. 2025-3-1

[9]
A bifunctional MXene@PtPd NPs cascade DNAzyme-mediated fluorescence/colorimetric dual-mode biosensor for Pb determination.

Food Chem. 2025-2-1

[10]
Nitrite determination in food using electrochemical sensor based on self-assembled MWCNTs/AuNPs/poly-melamine nanocomposite.

Food Chem. 2023-10-14

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索