Suppr超能文献

Mettl14 介导的 mA 修饰确保了晚期出生的视网膜祖细胞的细胞周期进程。

Mettl14-mediated mA modification ensures the cell-cycle progression of late-born retinal progenitor cells.

机构信息

Department of Ophthalmology, Mary M. and Sash A. Spencer Center for Vision Research, Byers Eye Institute, Stanford University, Stanford, CA 94304, USA.

Department of Ophthalmology, Mary M. and Sash A. Spencer Center for Vision Research, Byers Eye Institute, Stanford University, Stanford, CA 94304, USA; Department of Neurosurgery, Department of Neurology and Neurological Sciences, Stanford University, Stanford, CA 94305, USA.

出版信息

Cell Rep. 2023 Jun 27;42(6):112596. doi: 10.1016/j.celrep.2023.112596. Epub 2023 Jun 1.

Abstract

Neural progenitor cells lengthen their cell cycle to prime themselves for differentiation as development proceeds. It is currently not clear how they counter this lengthening and avoid being halted in the cell cycle. We show that N-methyladenosine (mA) methylation of cell-cycle-related mRNAs ensures the proper cell-cycle progression of late-born retinal progenitor cells (RPCs), which are born toward the end of retinogenesis and have long cell-cycle length. Conditional deletion of Mettl14, which is required for depositing mA, led to delayed cell-cycle exit of late-born RPCs but has no effect on retinal development prior to birth. mA sequencing and single-cell transcriptomics revealed that mRNAs involved in elongating the cell cycle were highly enriched for mA, which could target them for degradation and guarantee proper cell-cycle progression. In addition, we identified Zfp292 as a target of mA and potent inhibitor of RPC cell-cycle progression.

摘要

神经祖细胞延长细胞周期,为分化做好准备,随着发育的进行。目前尚不清楚它们如何对抗这种延长,以及如何避免在细胞周期中停滞。我们发现,细胞周期相关 mRNA 的 N6-甲基腺苷(m6A)甲基化确保了晚期视网膜祖细胞(RPC)的适当细胞周期进程,晚期 RPC 是在视网膜发生的末期产生的,其细胞周期较长。条件性敲除 Mettl14(m6A 修饰所必需的)导致晚期 RPC 细胞周期退出延迟,但对出生前的视网膜发育没有影响。m6A 测序和单细胞转录组学显示,参与延长细胞周期的 mRNA 高度富集 m6A,这可以靶向它们进行降解,并保证适当的细胞周期进程。此外,我们还鉴定出 Zfp292 是 m6A 的靶标和 RPC 细胞周期进程的有效抑制剂。

相似文献

1
Mettl14-mediated mA modification ensures the cell-cycle progression of late-born retinal progenitor cells.
Cell Rep. 2023 Jun 27;42(6):112596. doi: 10.1016/j.celrep.2023.112596. Epub 2023 Jun 1.
3
Single-Cell RNA Sequencing of hESC-Derived 3D Retinal Organoids Reveals Novel Genes Regulating RPC Commitment in Early Human Retinogenesis.
Stem Cell Reports. 2019 Oct 8;13(4):747-760. doi: 10.1016/j.stemcr.2019.08.012. Epub 2019 Sep 19.
4
mA writer complex promotes timely differentiation and survival of retinal progenitor cells in zebrafish.
Biochem Biophys Res Commun. 2021 Aug 27;567:171-176. doi: 10.1016/j.bbrc.2021.06.043. Epub 2021 Jun 21.
5
Laminin β2 Chain Regulates Retinal Progenitor Cell Mitotic Spindle Orientation via Dystroglycan.
J Neurosci. 2018 Jun 27;38(26):5996-6010. doi: 10.1523/JNEUROSCI.0551-18.2018. Epub 2018 May 31.
6
Cyclin D1 fine-tunes the neurogenic output of embryonic retinal progenitor cells.
Neural Dev. 2009 May 5;4:15. doi: 10.1186/1749-8104-4-15.
7
Gene expression is dynamically regulated in retinal progenitor cells prior to and during overt cellular differentiation.
Gene Expr Patterns. 2014 Jan;14(1):42-54. doi: 10.1016/j.gep.2013.10.003. Epub 2013 Oct 19.

引用本文的文献

2
dCasMINI-mediated therapy rescues photoreceptors degeneration in a mouse model of retinitis pigmentosa.
Sci Adv. 2024 Dec 20;10(51):eadn7540. doi: 10.1126/sciadv.adn7540. Epub 2024 Dec 18.
3
Ramifications of m6A Modification on ncRNAs in Cancer.
Curr Genomics. 2024 May 31;25(3):158-170. doi: 10.2174/0113892029296712240405053201. Epub 2024 Apr 9.

本文引用的文献

2
ZNF292 suppresses proliferation of ESCC cells through ZNF292/SKP2/P27 signaling axis.
Chin J Cancer Res. 2021 Dec 31;33(6):637-648. doi: 10.21147/j.issn.1000-9604.2021.06.01.
3
From Cell States to Cell Fates: How Cell Proliferation and Neuronal Differentiation Are Coordinated During Embryonic Development.
Front Neurosci. 2022 Jan 3;15:781160. doi: 10.3389/fnins.2021.781160. eCollection 2021.
4
mA Modification in Mammalian Nervous System Development, Functions, Disorders, and Injuries.
Front Cell Dev Biol. 2021 May 25;9:679662. doi: 10.3389/fcell.2021.679662. eCollection 2021.
5
Mechanisms of Cellular Senescence: Cell Cycle Arrest and Senescence Associated Secretory Phenotype.
Front Cell Dev Biol. 2021 Mar 29;9:645593. doi: 10.3389/fcell.2021.645593. eCollection 2021.
6
RNAScope Hybridization as a Novel Technique for the Assessment of c-KIT mRNA Expression in Canine Mast Cell Tumor.
Front Vet Sci. 2021 Feb 16;8:591961. doi: 10.3389/fvets.2021.591961. eCollection 2021.
7
The role of m6A modification in the biological functions and diseases.
Signal Transduct Target Ther. 2021 Feb 21;6(1):74. doi: 10.1038/s41392-020-00450-x.
8
SoupX removes ambient RNA contamination from droplet-based single-cell RNA sequencing data.
Gigascience. 2020 Dec 26;9(12). doi: 10.1093/gigascience/giaa151.
10
DoubletDecon: Deconvoluting Doublets from Single-Cell RNA-Sequencing Data.
Cell Rep. 2019 Nov 5;29(6):1718-1727.e8. doi: 10.1016/j.celrep.2019.09.082.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验