Reckelkamm Stefan Lars, Kamińska Inga, Baumeister Sebastian-Edgar, Holtfreter Birte, Alayash Zoheir, Rodakowska Ewa, Baginska Joanna, Kamiński Karol Adam, Nolde Michael
Institute of Health Services Research in Dentistry, University of Münster, Münster 48149, Germany.
Department of Integrated Dentistry, Medical University of Bialystok, Bialystok 15-276, Poland.
J Proteome Res. 2023 Jul 7;22(7):2509-2515. doi: 10.1021/acs.jproteome.3c00230. Epub 2023 Jun 3.
Periodontitis (PD), a widespread chronic infectious disease, compromises oral health and is associated with various systemic conditions and hematological alterations. Yet, to date, it is not clear whether serum protein profiling improves the assessment of PD. We collected general health data, performed dental examinations, and generated serum protein profiles using novel Proximity Extension Assay technology for 654 participants of the Bialystok PLUS study. To evaluate the incremental benefit of proteomics, we constructed two logistic regression models assessing the risk of having PD according to the CDC/AAP definition; the first one contained established PD predictors, and in addition, the second one was enhanced by extensive protein information. We then compared both models in terms of overall fit, discrimination, and calibration. For internal model validation, we performed bootstrap resampling ( = 2000). We identified 14 proteins, which improved the global fit and discrimination of a model of established PD risk factors, while maintaining reasonable calibration (area under the curve 0.82 vs 0.86; < 0.001). Our results suggest that proteomic technologies offer an interesting advancement in the goal of finding easy-to-use and scalable diagnostic applications for PD that do not require direct examination of the periodontium.
牙周炎(PD)是一种广泛存在的慢性感染性疾病,会损害口腔健康,并与各种全身性疾病和血液学改变相关。然而,迄今为止,尚不清楚血清蛋白质谱分析是否能改善对牙周炎的评估。我们收集了一般健康数据,进行了牙科检查,并使用新型邻近延伸分析技术为比亚韦斯托克PLUS研究的654名参与者生成了血清蛋白质谱。为了评估蛋白质组学的增量效益,我们构建了两个逻辑回归模型,根据美国疾病控制与预防中心/美国牙周病学会(CDC/AAP)的定义评估患牙周炎的风险;第一个模型包含已确定的牙周炎预测指标,此外,第二个模型通过大量蛋白质信息得到增强。然后,我们在整体拟合、区分度和校准方面对两个模型进行了比较。为了进行内部模型验证,我们进行了自抽样重采样( = 2000)。我们鉴定出14种蛋白质,这些蛋白质改善了已确定的牙周炎风险因素模型的整体拟合和区分度,同时保持了合理的校准(曲线下面积为0.82对0.86; < 0.001)。我们的结果表明,蛋白质组学技术在寻找无需直接检查牙周组织的易于使用且可扩展的牙周炎诊断应用目标方面提供了有趣的进展。