Suppr超能文献

LMDA-Net:一种用于通用基于 EEG 的脑机接口和可解释性的轻量级多维注意力网络。

LMDA-Net:A lightweight multi-dimensional attention network for general EEG-based brain-computer interfaces and interpretability.

机构信息

State Key Laboratory of Precision Measuring Technology and Instruments, School of Precision Instrument and Opto-electronics Engineering, Tianjin University, Tianjin 300072, China.

Laboratory of Neural Engineering and Rehabilitation, Department of Biomedical Engineering, School of Precision Instruments and Optoelectronics Engineering, Tianjin University, China; Tianjin International Joint Research Center for Neural Engineering, Academy of Medical Engineering and Translational Medicine, Tianjin University, Tianjin 300072, China.

出版信息

Neuroimage. 2023 Aug 1;276:120209. doi: 10.1016/j.neuroimage.2023.120209. Epub 2023 Jun 2.

Abstract

Electroencephalography (EEG)-based brain-computer interfaces (BCIs) pose a challenge for decoding due to their low spatial resolution and signal-to-noise ratio. Typically, EEG-based recognition of activities and states involves the use of prior neuroscience knowledge to generate quantitative EEG features, which may limit BCI performance. Although neural network-based methods can effectively extract features, they often encounter issues such as poor generalization across datasets, high predicting volatility, and low model interpretability. To address these limitations, we propose a novel lightweight multi-dimensional attention network, called LMDA-Net. By incorporating two novel attention modules designed specifically for EEG signals, the channel attention module and the depth attention module, LMDA-Net is able to effectively integrate features from multiple dimensions, resulting in improved classification performance across various BCI tasks. LMDA-Net was evaluated on four high-impact public datasets, including motor imagery (MI) and P300-Speller, and was compared with other representative models. The experimental results demonstrate that LMDA-Net outperforms other representative methods in terms of classification accuracy and predicting volatility, achieving the highest accuracy in all datasets within 300 training epochs. Ablation experiments further confirm the effectiveness of the channel attention module and the depth attention module. To facilitate an in-depth understanding of the features extracted by LMDA-Net, we propose class-specific neural network feature interpretability algorithms that are suitable for evoked responses and endogenous activities. By mapping the output of the specific layer of LMDA-Net to the time or spatial domain through class activation maps, the resulting feature visualizations can provide interpretable analysis and establish connections with EEG time-spatial analysis in neuroscience. In summary, LMDA-Net shows great potential as a general decoding model for various EEG tasks.

摘要

基于脑电图的脑机接口(BCI)由于其空间分辨率和信噪比低,在解码方面存在挑战。通常,基于脑电图的活动和状态识别涉及使用先验神经科学知识来生成定量脑电图特征,这可能限制 BCI 的性能。尽管基于神经网络的方法可以有效地提取特征,但它们经常遇到跨数据集泛化能力差、预测波动性高和模型可解释性低等问题。为了解决这些限制,我们提出了一种新的轻量级多维注意力网络,称为 LMDA-Net。通过结合两个专门为 EEG 信号设计的新颖注意力模块,即通道注意力模块和深度注意力模块,LMDA-Net 能够有效地整合来自多个维度的特征,从而提高各种 BCI 任务的分类性能。LMDA-Net 在四个高影响力的公共数据集上进行了评估,包括运动想象(MI)和 P300-Speller,并与其他代表性模型进行了比较。实验结果表明,LMDA-Net 在分类精度和预测波动性方面优于其他代表性方法,在所有数据集内 300 个训练周期内达到最高精度。消融实验进一步证实了通道注意力模块和深度注意力模块的有效性。为了深入了解 LMDA-Net 提取的特征,我们提出了适用于诱发响应和内源性活动的特定于类别的神经网络特征可解释性算法。通过将 LMDA-Net 特定层的输出通过类激活图映射到时间或空间域,得到的特征可视化可以提供可解释的分析,并与神经科学中的 EEG 时频分析建立联系。总之,LMDA-Net 作为一种用于各种 EEG 任务的通用解码模型具有很大的潜力。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验