Suppr超能文献

EEGGAN-Net:通过数据增强提升脑电图信号分类效果

EEGGAN-Net: enhancing EEG signal classification through data augmentation.

作者信息

Song Jiuxiang, Zhai Qiang, Wang Chuang, Liu Jizhong

机构信息

School of Advanced Manufacturing, Nanchang University, Nanchang, Jiangxi, China.

Shaoxing Institute of Advanced Research, Wuhan University of Technology, Shaoxing, Zhejiang, China.

出版信息

Front Hum Neurosci. 2024 Jun 21;18:1430086. doi: 10.3389/fnhum.2024.1430086. eCollection 2024.

Abstract

BACKGROUND

Emerging brain-computer interface (BCI) technology holds promising potential to enhance the quality of life for individuals with disabilities. Nevertheless, the constrained accuracy of electroencephalography (EEG) signal classification poses numerous hurdles in real-world applications.

METHODS

In response to this predicament, we introduce a novel EEG signal classification model termed EEGGAN-Net, leveraging a data augmentation framework. By incorporating Conditional Generative Adversarial Network (CGAN) data augmentation, a cropped training strategy and a Squeeze-and-Excitation (SE) attention mechanism, EEGGAN-Net adeptly assimilates crucial features from the data, consequently enhancing classification efficacy across diverse BCI tasks.

RESULTS

The EEGGAN-Net model exhibits notable performance metrics on the BCI Competition IV-2a and IV-2b datasets. Specifically, it achieves a classification accuracy of 81.3% with a kappa value of 0.751 on the IV-2a dataset, and a classification accuracy of 90.3% with a kappa value of 0.79 on the IV-2b dataset. Remarkably, these results surpass those of four other CNN-based decoding models.

CONCLUSIONS

In conclusion, the amalgamation of data augmentation and attention mechanisms proves instrumental in acquiring generalized features from EEG signals, ultimately elevating the overall proficiency of EEG signal classification.

摘要

背景

新兴的脑机接口(BCI)技术在提高残疾人生活质量方面具有广阔的潜力。然而,脑电图(EEG)信号分类的准确性受限在实际应用中带来了诸多障碍。

方法

针对这一困境,我们引入了一种名为EEGGAN-Net的新型EEG信号分类模型,利用数据增强框架。通过结合条件生成对抗网络(CGAN)数据增强、裁剪训练策略和挤压激励(SE)注意力机制,EEGGAN-Net巧妙地从数据中吸收关键特征,从而提高了各种BCI任务的分类效率。

结果

EEGGAN-Net模型在BCI竞赛IV-2a和IV-2b数据集上表现出显著的性能指标。具体而言,它在IV-2a数据集上实现了81.3%的分类准确率,kappa值为0.751;在IV-2b数据集上实现了90.3%的分类准确率,kappa值为0.79。值得注意的是,这些结果超过了其他四个基于卷积神经网络(CNN)的解码模型。

结论

总之,数据增强和注意力机制的结合被证明有助于从EEG信号中获取通用特征,最终提高EEG信号分类的整体水平。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e95e/11247432/e1d890fab64b/fnhum-18-1430086-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验