Song Jiuxiang, Zhai Qiang, Wang Chuang, Liu Jizhong
School of Advanced Manufacturing, Nanchang University, Nanchang, Jiangxi, China.
Shaoxing Institute of Advanced Research, Wuhan University of Technology, Shaoxing, Zhejiang, China.
Front Hum Neurosci. 2024 Jun 21;18:1430086. doi: 10.3389/fnhum.2024.1430086. eCollection 2024.
Emerging brain-computer interface (BCI) technology holds promising potential to enhance the quality of life for individuals with disabilities. Nevertheless, the constrained accuracy of electroencephalography (EEG) signal classification poses numerous hurdles in real-world applications.
In response to this predicament, we introduce a novel EEG signal classification model termed EEGGAN-Net, leveraging a data augmentation framework. By incorporating Conditional Generative Adversarial Network (CGAN) data augmentation, a cropped training strategy and a Squeeze-and-Excitation (SE) attention mechanism, EEGGAN-Net adeptly assimilates crucial features from the data, consequently enhancing classification efficacy across diverse BCI tasks.
The EEGGAN-Net model exhibits notable performance metrics on the BCI Competition IV-2a and IV-2b datasets. Specifically, it achieves a classification accuracy of 81.3% with a kappa value of 0.751 on the IV-2a dataset, and a classification accuracy of 90.3% with a kappa value of 0.79 on the IV-2b dataset. Remarkably, these results surpass those of four other CNN-based decoding models.
In conclusion, the amalgamation of data augmentation and attention mechanisms proves instrumental in acquiring generalized features from EEG signals, ultimately elevating the overall proficiency of EEG signal classification.
新兴的脑机接口(BCI)技术在提高残疾人生活质量方面具有广阔的潜力。然而,脑电图(EEG)信号分类的准确性受限在实际应用中带来了诸多障碍。
针对这一困境,我们引入了一种名为EEGGAN-Net的新型EEG信号分类模型,利用数据增强框架。通过结合条件生成对抗网络(CGAN)数据增强、裁剪训练策略和挤压激励(SE)注意力机制,EEGGAN-Net巧妙地从数据中吸收关键特征,从而提高了各种BCI任务的分类效率。
EEGGAN-Net模型在BCI竞赛IV-2a和IV-2b数据集上表现出显著的性能指标。具体而言,它在IV-2a数据集上实现了81.3%的分类准确率,kappa值为0.751;在IV-2b数据集上实现了90.3%的分类准确率,kappa值为0.79。值得注意的是,这些结果超过了其他四个基于卷积神经网络(CNN)的解码模型。
总之,数据增强和注意力机制的结合被证明有助于从EEG信号中获取通用特征,最终提高EEG信号分类的整体水平。