Data Science and Modelling, Pharmaceutical Sciences, R&D, AstraZeneca Gothenburg, Pepparedsleden 1, Molndal SE-431 83, Sweden.
Department of Chemistry and Chemical Engineering, Chalmers University of Technology, Gothenburg, Sweden.
J Chem Phys. 2023 Jun 7;158(21). doi: 10.1063/5.0150291.
Nuclear quantum phenomena beyond the Born-Oppenheimer approximation are known to play an important role in a growing number of chemical and biological processes. While there exists no unique consensus on a rigorous and efficient implementation of coupled electron-nuclear quantum dynamics, it is recognized that these problems scale exponentially with system size on classical processors and, therefore, may benefit from quantum computing implementations. Here, we introduce a methodology for the efficient quantum treatment of the electron-nuclear problem on near-term quantum computers, based upon the Nuclear-Electronic Orbital (NEO) approach. We generalize the electronic two-qubit tapering scheme to include nuclei by exploiting symmetries inherent in the NEO framework, thereby reducing the Hamiltonian dimension, number of qubits, gates, and measurements needed for calculations. We also develop parameter transfer and initialization techniques, which improve convergence behavior relative to conventional initialization. These techniques are applied to H2 and malonaldehyde for which results agree with NEO full configuration interaction and NEO complete active space configuration interaction benchmarks for ground state energy to within 10-6 hartree and entanglement entropy to within 10-4. These implementations therefore significantly reduce resource requirements for full quantum simulations of molecules on near-term quantum devices while maintaining high accuracy.
超越玻恩-奥本海默近似的核量子现象,在越来越多的化学和生物过程中发挥着重要作用。虽然对于耦合电子-核量子动力学的严格和高效实现还没有达成一致的共识,但人们认识到,这些问题在经典处理器上的规模随系统大小呈指数增长,因此可能受益于量子计算的实现。在这里,我们基于核电子轨道(NEO)方法,为近期的量子计算机上电子-核问题的高效量子处理引入了一种方法。我们通过利用 NEO 框架中固有的对称性,将电子双量子截断方案推广到包括原子核,从而减少了计算所需的哈密顿量维度、qubit 数量、门和测量。我们还开发了参数转移和初始化技术,这些技术相对于传统的初始化方法,提高了收敛性。这些技术被应用于 H2 和丙二醛,其结果与 NEO 全组态相互作用和 NEO 完全活性空间组态相互作用基准在基态能量的误差在 10-6 以内,纠缠熵的误差在 10-4 以内。因此,这些实现大大降低了在近期量子设备上进行全量子分子模拟的资源需求,同时保持了高精度。