文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

Current status of -, -, -heterocycles as potential alkaline phosphatase inhibitors: a medicinal chemistry overview.

作者信息

Jassas Rabab S, Naeem Nafeesa, Sadiq Amina, Mehmood Rabia, Alenazi Noof A, Al-Rooqi Munirah M, Mughal Ehsan Ullah, Alsantali Reem I, Ahmed Saleh A

机构信息

Department of Chemistry, Jamoum University College, Umm Al-Qura University Makkah 21955 Saudi Arabia.

Department of Chemistry, University of Gujrat Gujrat 50700 Pakistan

出版信息

RSC Adv. 2023 Jun 1;13(24):16413-16452. doi: 10.1039/d3ra01888a. eCollection 2023 May 30.


DOI:10.1039/d3ra01888a
PMID:37274413
原文链接:https://pmc.ncbi.nlm.nih.gov/articles/PMC10233329/
Abstract

Heterocycles are a class of compounds that have been found to be potent inhibitors of alkaline phosphatase (AP), an enzyme that plays a critical role in various physiological processes such as bone metabolism, cell growth and differentiation, and has been linked to several diseases such as cancer and osteoporosis. AP is a widely distributed enzyme, and its inhibition has been considered as a therapeutic strategy for the treatment of these diseases. Heterocyclic compounds have been found to inhibit AP by binding to the active site of the enzyme, thereby inhibiting its activity. Heterocyclic compounds such as imidazoles, pyrazoles, and pyridines have been found to be potent AP inhibitors and have been studied as potential therapeutics for the treatment of cancer, osteoporosis, and other diseases. However, the development of more potent and selective inhibitors that can be used as therapeutics for the treatment of various diseases is an ongoing area of research. Additionally, the study of the mechanism of action of heterocyclic AP inhibitors is an ongoing area of research, which could lead to the identification of new targets and new therapeutic strategies. The enzyme known as AP has various physiological functions and is present in multiple tissues and organs throughout the body. This article presents an overview of the different types of AP isoforms, their distribution, and physiological roles. It also discusses the structure and mechanism of AP, including the hydrolysis of phosphate groups. Furthermore, the importance of AP as a clinical marker for liver disease, bone disorders, and cancer is emphasized, as well as its use in the diagnosis of rare inherited disorders such as hypophosphatasia. The potential therapeutic applications of AP inhibitors for different diseases are also explored. The objective of this literature review is to examine the function of alkaline phosphatase in various physiological conditions and diseases, as well as analyze the structure-activity relationships of recently reported inhibitors. The present review summarizes the structure-activity relationship (SAR) of various heterocyclic compounds as AP inhibitors. The SAR studies of these compounds have revealed that the presence of a heterocyclic ring, particularly a pyridine, pyrimidine, or pyrazole ring, in the molecule is essential for inhibitory activity. Additionally, the substitution pattern and stereochemistry of the heterocyclic ring also play a crucial role in determining the potency of the inhibitor.

摘要
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/02bc/10233329/e9be9d32779b/d3ra01888a-p2.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/02bc/10233329/786a580262fd/d3ra01888a-f1.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/02bc/10233329/9b0878f23515/d3ra01888a-f2.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/02bc/10233329/bdc7210ddd07/d3ra01888a-f3.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/02bc/10233329/06b8651aa43d/d3ra01888a-f4.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/02bc/10233329/169bd9945b21/d3ra01888a-f5.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/02bc/10233329/17d001b65ac2/d3ra01888a-f6.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/02bc/10233329/b9042e72deed/d3ra01888a-f7.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/02bc/10233329/d0a70e35aa79/d3ra01888a-f8.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/02bc/10233329/54f698a2a62d/d3ra01888a-f9.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/02bc/10233329/c025316b656e/d3ra01888a-f10.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/02bc/10233329/8f3cda973b20/d3ra01888a-f11.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/02bc/10233329/7c65dc49755a/d3ra01888a-f12.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/02bc/10233329/5be53a631994/d3ra01888a-f13.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/02bc/10233329/24be01e73665/d3ra01888a-f14.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/02bc/10233329/de6d7b97e11e/d3ra01888a-f15.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/02bc/10233329/a69b56d7e174/d3ra01888a-f16.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/02bc/10233329/96fc3b1aee92/d3ra01888a-f17.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/02bc/10233329/a6659824d5ca/d3ra01888a-f18.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/02bc/10233329/7c2db7d8deff/d3ra01888a-f19.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/02bc/10233329/877ae2aa5d9b/d3ra01888a-f20.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/02bc/10233329/7f70dd72165e/d3ra01888a-f21.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/02bc/10233329/bdbe21b90b4e/d3ra01888a-f22.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/02bc/10233329/6710f4049e8c/d3ra01888a-f23.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/02bc/10233329/6f0436244c82/d3ra01888a-f24.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/02bc/10233329/584afe24cc7b/d3ra01888a-f25.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/02bc/10233329/cd4357fdc708/d3ra01888a-f26.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/02bc/10233329/c2d5c9e9f652/d3ra01888a-f27.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/02bc/10233329/afba8a090fd5/d3ra01888a-f28.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/02bc/10233329/3ceec4367cce/d3ra01888a-f29.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/02bc/10233329/12448a9ad250/d3ra01888a-f30.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/02bc/10233329/9d361df0e904/d3ra01888a-f31.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/02bc/10233329/61c87e8ae0e9/d3ra01888a-f32.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/02bc/10233329/38661e3fd7ec/d3ra01888a-f33.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/02bc/10233329/39b2d4a9c654/d3ra01888a-f35.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/02bc/10233329/f625fbfce180/d3ra01888a-f37.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/02bc/10233329/db0358346618/d3ra01888a-f39.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/02bc/10233329/2f906ada0e42/d3ra01888a-f42.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/02bc/10233329/e9be9d32779b/d3ra01888a-p2.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/02bc/10233329/786a580262fd/d3ra01888a-f1.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/02bc/10233329/9b0878f23515/d3ra01888a-f2.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/02bc/10233329/bdc7210ddd07/d3ra01888a-f3.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/02bc/10233329/06b8651aa43d/d3ra01888a-f4.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/02bc/10233329/169bd9945b21/d3ra01888a-f5.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/02bc/10233329/17d001b65ac2/d3ra01888a-f6.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/02bc/10233329/b9042e72deed/d3ra01888a-f7.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/02bc/10233329/d0a70e35aa79/d3ra01888a-f8.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/02bc/10233329/54f698a2a62d/d3ra01888a-f9.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/02bc/10233329/c025316b656e/d3ra01888a-f10.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/02bc/10233329/8f3cda973b20/d3ra01888a-f11.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/02bc/10233329/7c65dc49755a/d3ra01888a-f12.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/02bc/10233329/5be53a631994/d3ra01888a-f13.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/02bc/10233329/24be01e73665/d3ra01888a-f14.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/02bc/10233329/de6d7b97e11e/d3ra01888a-f15.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/02bc/10233329/a69b56d7e174/d3ra01888a-f16.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/02bc/10233329/96fc3b1aee92/d3ra01888a-f17.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/02bc/10233329/a6659824d5ca/d3ra01888a-f18.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/02bc/10233329/7c2db7d8deff/d3ra01888a-f19.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/02bc/10233329/877ae2aa5d9b/d3ra01888a-f20.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/02bc/10233329/7f70dd72165e/d3ra01888a-f21.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/02bc/10233329/bdbe21b90b4e/d3ra01888a-f22.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/02bc/10233329/6710f4049e8c/d3ra01888a-f23.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/02bc/10233329/6f0436244c82/d3ra01888a-f24.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/02bc/10233329/584afe24cc7b/d3ra01888a-f25.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/02bc/10233329/cd4357fdc708/d3ra01888a-f26.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/02bc/10233329/c2d5c9e9f652/d3ra01888a-f27.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/02bc/10233329/afba8a090fd5/d3ra01888a-f28.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/02bc/10233329/3ceec4367cce/d3ra01888a-f29.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/02bc/10233329/12448a9ad250/d3ra01888a-f30.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/02bc/10233329/9d361df0e904/d3ra01888a-f31.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/02bc/10233329/61c87e8ae0e9/d3ra01888a-f32.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/02bc/10233329/38661e3fd7ec/d3ra01888a-f33.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/02bc/10233329/39b2d4a9c654/d3ra01888a-f35.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/02bc/10233329/f625fbfce180/d3ra01888a-f37.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/02bc/10233329/db0358346618/d3ra01888a-f39.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/02bc/10233329/2f906ada0e42/d3ra01888a-f42.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/02bc/10233329/e9be9d32779b/d3ra01888a-p2.jpg

相似文献

[1]
Current status of -, -, -heterocycles as potential alkaline phosphatase inhibitors: a medicinal chemistry overview.

RSC Adv. 2023-6-1

[2]
2-Benzylidenebenzofuran-3(2)-ones as a new class of alkaline phosphatase inhibitors: synthesis, SAR analysis, enzyme inhibitory kinetics and computational studies.

RSC Adv. 2021-10-29

[3]
Syntheses and antitumor activities of potent inhibitors of ribonucleotide reductase: 3-amino-4-methylpyridine-2-carboxaldehyde-thiosemicarba-zone (3-AMP), 3-amino-pyridine-2-carboxaldehyde-thiosemicarbazone (3-AP) and its water-soluble prodrugs.

Curr Med Chem. 2001-2

[4]
Functional interrelationships in the alkaline phosphatase superfamily: phosphodiesterase activity of Escherichia coli alkaline phosphatase.

Biochemistry. 2001-5-15

[5]
Therapeutic potential of anticancer activity of nitrogen-containing heterocyclic scaffolds as Janus kinase (JAK) inhibitor: Biological activity, selectivity, and structure-activity relationship.

Bioorg Chem. 2024-11

[6]
A Medicinal Chemist's Perspective Towards Structure Activity Relationship of Heterocycle Based Anticancer Agents.

Curr Top Med Chem. 2022

[7]
Tricyclic coumarin sulphonate derivatives with alkaline phosphatase inhibitory effects: in vitro and docking studies.

J Enzyme Inhib Med Chem. 2018-12

[8]
Diarylsulfonamides and their bioisosteres as dual inhibitors of alkaline phosphatase and carbonic anhydrase: Structure activity relationship and molecular modelling studies.

Bioorg Med Chem. 2015-5-15

[9]
Structural Perspectives in the Development of Novel EGFR Inhibitors for the Treatment of NSCLC.

Mini Rev Med Chem. 2024

[10]
Estrogen synthetase inhibitors. 2. Comparison of the in vitro aromatase inhibitory activity for a variety of nitrogen heterocycles substituted with diarylmethane or diarylmethanol groups.

J Med Chem. 1990-1

引用本文的文献

[1]
Identification of potent TMPRSS4 inhibitors through structural modeling and molecular dynamics simulations.

Sci Rep. 2025-1-22

[2]
In Silico Prediction of Alkaline Phosphatase Interaction with the Natural Inhibitory 5-Azaindoles Guitarrin C and D.

Molecules. 2024-12-3

[3]
Exploring heterocyclic scaffolds in carbonic anhydrase inhibition: a decade of structural and therapeutic insights.

RSC Adv. 2024-11-12

[4]
Facile Synthesis of -(4-Bromo-3-methylphenyl)pyrazine-2-carboxamide Derivatives, Their Antibacterial Activities against Clinically Isolated XDR , Alkaline Phosphatase Inhibitor Activities, and Docking Studies.

Pharmaceuticals (Basel). 2024-9-20

[5]
Unveiling sultam in drug discovery: spotlight on the underexplored scaffold.

RSC Med Chem. 2024-4-16

本文引用的文献

[1]
Exploring chromone sulfonamides and sulfonylhydrazones as highly selective ectonucleotidase inhibitors: Synthesis, biological evaluation and in silico study.

Bioorg Chem. 2023-5

[2]
Flavonoids and related privileged scaffolds as potential urease inhibitors: a review.

RSC Adv. 2023-1-23

[3]
Synthesis, kinetic studies and investigations of novel quinolinyl-iminothiazolines as alkaline phosphatase inhibitors.

J Enzyme Inhib Med Chem. 2023-12

[4]
Development of novel isatin thiazolyl-pyrazoline hybrids as promising antimicrobials in MDR pathogens.

RSC Adv. 2022-11-2

[5]
Potent Alkaline Phosphatase Inhibitors, Pyrazolo-Oxothiazolidines: Synthesis, Biological Evaluation, Molecular Docking, and Kinetic Studies.

Int J Mol Sci. 2022-10-31

[6]
Exploring Novel Pyridine Carboxamide Derivatives as Urease Inhibitors: Synthesis, Molecular Docking, Kinetic Studies and ADME Profile.

Pharmaceuticals (Basel). 2022-10-19

[7]
Exploring 2-Tetradecanoylimino-3-aryl-4-methyl-1,3-thiazolines Derivatives as Alkaline Phosphatase Inhibitors: Biochemical Evaluation and Computational Analysis.

Molecules. 2022-10-10

[8]
Design, Synthesis, and Biological Evaluation of Novel Dihydropyridine and Pyridine Analogs as Potent Human Tissue Nonspecific Alkaline Phosphatase Inhibitors with Anticancer Activity: ROS and DNA Damage-Induced Apoptosis.

Molecules. 2022-9-22

[9]
Synthesis of Novel 2,3-Dihydro-1,5-Benzothiazepines as α-Glucosidase Inhibitors: , , Kinetic, SAR, Molecular Docking, and QSAR Studies.

ACS Omega. 2022-8-17

[10]
Inhibitory potential of nitrogen, oxygen and sulfur containing heterocyclic scaffolds against acetylcholinesterase and butyrylcholinesterase.

RSC Adv. 2022-7-12

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索