Shah M A K Yousaf, Lund Peter D, Zhu Bin
Jiangsu Provincial Key Laboratory of Solar Energy Science and Technology/ Energy Storage Joint Research Center, Southeast University, Nanjing, Jiangsu, China.
New Energy Technologies Group, Department of Applied Physics, Aalto University School of Science, P. O. Box 15100, 00076 Aalto, Espoo, Finland.
iScience. 2023 May 16;26(6):106869. doi: 10.1016/j.isci.2023.106869. eCollection 2023 Jun 16.
The fuel cell's three layers-anode/electrolyte/cathode-convert fuel's chemical energy into electricity. Electrolyte membranes determine fuel cell types. Solid-state and ceramic electrolyte SOFC/PCFC and polymer based PEMFC fuel cells dominate fuel cell research. We present a new fuel cell concept using next-generation ceramic nanocomposites made of semiconductor-ionic material combinations. A built-in electric field driving mechanism boosts ionic (O or H or both) conductivity in these materials. In a fuel cell device, non-doped ceria or its heterostructure might attain 1 Wcm power density. We reviewed promising functional nanocomposites for that range. Ceria-based and multifunctional semiconductor-ionic electrolytes will be highlighted. Owing to their simplicity and abundant resources, these materials might be used to make fuel cells cheaper and more accessible.
燃料电池的三层结构——阳极/电解质/阴极——将燃料的化学能转化为电能。电解质膜决定了燃料电池的类型。固态和陶瓷电解质的固体氧化物燃料电池/质子陶瓷燃料电池以及基于聚合物的质子交换膜燃料电池主导着燃料电池研究。我们提出了一种使用由半导体-离子材料组合制成的下一代陶瓷纳米复合材料的新型燃料电池概念。一种内置的电场驱动机制提高了这些材料中的离子(氧或氢或两者)传导率。在燃料电池装置中,未掺杂的氧化铈或其异质结构可能达到1瓦每平方厘米的功率密度。我们综述了适用于该范围的有前景的功能纳米复合材料。将重点介绍基于氧化铈的和多功能半导体-离子电解质。由于其简单性和资源丰富,这些材料可用于使燃料电池更便宜且更易获得。