Casadei Cecilia M, Hosseinizadeh Ahmad, Bliven Spencer, Weinert Tobias, Standfuss Jörg, Fung Russell, Schertler Gebhard F X, Santra Robin
Department of Physics, University of Wisconsin-Milwaukee, Milwaukee, Wisconsin 53211, USA.
Science IT Infrastructure and Services, Division Scientific Computing, Theory and Data, Paul Scherrer Institute, Villigen PSI, Switzerland.
Struct Dyn. 2023 May 26;10(3):034101. doi: 10.1063/4.0000178. eCollection 2023 May.
Low-pass spectral analysis (LPSA) is a recently developed dynamics retrieval algorithm showing excellent retrieval properties when applied to model data affected by extreme incompleteness and stochastic weighting. In this work, we apply LPSA to an experimental time-resolved serial femtosecond crystallography (TR-SFX) dataset from the membrane protein bacteriorhodopsin (bR) and analyze its parametric sensitivity. While most dynamical modes are contaminated by nonphysical high-frequency features, we identify two dominant modes, which are little affected by spurious frequencies. The dynamics retrieved using these modes shows an isomerization signal compatible with previous findings. We employ synthetic data with increasing timing uncertainty, increasing incompleteness level, pixel-dependent incompleteness, and photon counting errors to investigate the root cause of the high-frequency contamination of our TR-SFX modes. By testing a range of methods, we show that timing errors comparable to the dynamical periods to be retrieved produce a smearing of dynamical features, hampering dynamics retrieval, but with no introduction of spurious components in the solution, when convergence criteria are met. Using model data, we are able to attribute the high-frequency contamination of low-order dynamical modes to the high levels of noise present in the data. Finally, we propose a method to handle missing observations that produces a substantial dynamics retrieval improvement from synthetic data with a significant static component. Reprocessing of the bR TR-SFX data using the improved method yields dynamical movies with strong isomerization signals compatible with previous findings.
低通谱分析(LPSA)是一种最近开发的动力学检索算法,当应用于受极端不完整性和随机加权影响的模型数据时,显示出优异的检索特性。在这项工作中,我们将LPSA应用于来自膜蛋白细菌视紫红质(bR)的实验性时间分辨串行飞秒晶体学(TR-SFX)数据集,并分析其参数敏感性。虽然大多数动力学模式被非物理高频特征污染,但我们识别出两种主导模式,它们几乎不受虚假频率的影响。使用这些模式检索到的动力学显示出与先前发现兼容的异构化信号。我们使用具有增加的定时不确定性、增加的不完整性水平、像素相关的不完整性和光子计数误差的合成数据来研究我们的TR-SFX模式高频污染的根本原因。通过测试一系列方法,我们表明,当满足收敛标准时,与要检索的动力学周期相当的定时误差会导致动力学特征的模糊,阻碍动力学检索,但不会在解中引入虚假成分。使用模型数据,我们能够将低阶动力学模式的高频污染归因于数据中存在的高水平噪声。最后,我们提出了一种处理缺失观测值的方法,该方法从具有显著静态成分的合成数据中显著改善了动力学检索。使用改进方法对bR TR-SFX数据进行重新处理,得到了具有与先前发现兼容的强异构化信号的动力学电影。