Suppr超能文献

高效推断具有基因调控网络应用的空间变化的高斯马尔可夫随机场。

Efficient Inference of Spatially-Varying Gaussian Markov Random Fields With Applications in Gene Regulatory Networks.

出版信息

IEEE/ACM Trans Comput Biol Bioinform. 2023 Sep-Oct;20(5):2920-2932. doi: 10.1109/TCBB.2023.3282028. Epub 2023 Oct 9.

Abstract

In this paper, we study the problem of inferring spatially-varying Gaussian Markov random fields (SV-GMRF) where the goal is to learn a network of sparse, context-specific GMRFs representing network relationships between genes. An important application of SV-GMRFs is in inference of gene regulatory networks from spatially-resolved transcriptomics datasets. The current work on inference of SV-GMRFs are based on the regularized maximum likelihood estimation (MLE) and suffer from overwhelmingly high computational cost due to their highly nonlinear nature. To alleviate this challenge, we propose a simple and efficient optimization problem in lieu of MLE that comes equipped with strong statistical and computational guarantees. Our proposed optimization problem is extremely efficient in practice: we can solve instances of SV-GMRFs with more than 2 million variables in less than 2 minutes. We apply the developed framework to study how gene regulatory networks in Glioblastoma are spatially rewired within tissue, and identify prominent activity of the transcription factor HES4 and ribosomal proteins as characterizing the gene expression network in the tumor peri-vascular niche that is known to harbor treatment resistant stem cells.

摘要

在本文中,我们研究了推断空间变化的高斯马尔可夫随机场(SV-GMRF)的问题,其目的是学习一个稀疏的、特定于上下文的 GMRF 网络,该网络表示基因之间的网络关系。SV-GMRF 的一个重要应用是从空间分辨转录组数据集推断基因调控网络。目前基于正则化最大似然估计(MLE)的 SV-GMRF 推断工作,由于其高度非线性,计算成本极高。为了缓解这一挑战,我们提出了一个简单而有效的优化问题,替代 MLE,它具有强大的统计和计算保证。我们提出的优化问题在实践中非常高效:我们可以在不到 2 分钟的时间内解决超过 200 万个变量的 SV-GMRF 实例。我们应用所开发的框架来研究胶质母细胞瘤中的基因调控网络如何在组织内重新布线,并确定转录因子 HES4 和核糖体蛋白的显著活性,作为已知含有治疗抗性干细胞的肿瘤血管周围龛中基因表达网络的特征。

相似文献

1
Efficient Inference of Spatially-Varying Gaussian Markov Random Fields With Applications in Gene Regulatory Networks.
IEEE/ACM Trans Comput Biol Bioinform. 2023 Sep-Oct;20(5):2920-2932. doi: 10.1109/TCBB.2023.3282028. Epub 2023 Oct 9.
2
MICRAT: a novel algorithm for inferring gene regulatory networks using time series gene expression data.
BMC Syst Biol. 2018 Dec 14;12(Suppl 7):115. doi: 10.1186/s12918-018-0635-1.
4
FastGGM: An Efficient Algorithm for the Inference of Gaussian Graphical Model in Biological Networks.
PLoS Comput Biol. 2016 Feb 12;12(2):e1004755. doi: 10.1371/journal.pcbi.1004755. eCollection 2016 Feb.
5
Parametric and non-parametric gradient matching for network inference: a comparison.
BMC Bioinformatics. 2019 Jan 25;20(1):52. doi: 10.1186/s12859-018-2590-7.
6
Inferring Gene Co-Expression Networks by Incorporating Prior Protein-Protein Interaction Networks.
IEEE/ACM Trans Comput Biol Bioinform. 2022 Sep-Oct;19(5):2894-2906. doi: 10.1109/TCBB.2021.3103407. Epub 2022 Oct 10.
7
A gene regulatory network inference model based on pseudo-siamese network.
BMC Bioinformatics. 2023 Apr 21;24(1):163. doi: 10.1186/s12859-023-05253-9.
9
Inferring Gene Regulatory Networks from Multiple Datasets.
Methods Mol Biol. 2019;1883:251-282. doi: 10.1007/978-1-4939-8882-2_11.

本文引用的文献

1
Cancer cell states recur across tumor types and form specific interactions with the tumor microenvironment.
Nat Genet. 2022 Aug;54(8):1192-1201. doi: 10.1038/s41588-022-01141-9. Epub 2022 Aug 5.
2
Cell2location maps fine-grained cell types in spatial transcriptomics.
Nat Biotechnol. 2022 May;40(5):661-671. doi: 10.1038/s41587-021-01139-4. Epub 2022 Jan 13.
3
Cancer cell heterogeneity and plasticity: A paradigm shift in glioblastoma.
Neuro Oncol. 2022 May 4;24(5):669-682. doi: 10.1093/neuonc/noab269.
4
SOX transcription factors and glioma stem cells: Choosing between stemness and differentiation.
World J Stem Cells. 2021 Oct 26;13(10):1417-1445. doi: 10.4252/wjsc.v13.i10.1417.
6
Exploring tissue architecture using spatial transcriptomics.
Nature. 2021 Aug;596(7871):211-220. doi: 10.1038/s41586-021-03634-9. Epub 2021 Aug 11.
8
Integrated analysis of multimodal single-cell data.
Cell. 2021 Jun 24;184(13):3573-3587.e29. doi: 10.1016/j.cell.2021.04.048. Epub 2021 May 31.
9
Robust decomposition of cell type mixtures in spatial transcriptomics.
Nat Biotechnol. 2022 Apr;40(4):517-526. doi: 10.1038/s41587-021-00830-w. Epub 2021 Feb 18.
10
Tumor cell plasticity, heterogeneity, and resistance in crucial microenvironmental niches in glioma.
Nat Commun. 2021 Feb 12;12(1):1014. doi: 10.1038/s41467-021-21117-3.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验