文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

空间转录组学中细胞类型混合物的稳健分解。

Robust decomposition of cell type mixtures in spatial transcriptomics.

机构信息

Department of Electrical Engineering and Computer Science, MIT, Cambridge, MA, USA.

Broad Institute of Harvard and MIT, Cambridge, MA, USA.

出版信息

Nat Biotechnol. 2022 Apr;40(4):517-526. doi: 10.1038/s41587-021-00830-w. Epub 2021 Feb 18.


DOI:10.1038/s41587-021-00830-w
PMID:33603203
原文链接:https://pmc.ncbi.nlm.nih.gov/articles/PMC8606190/
Abstract

A limitation of spatial transcriptomics technologies is that individual measurements may contain contributions from multiple cells, hindering the discovery of cell-type-specific spatial patterns of localization and expression. Here, we develop robust cell type decomposition (RCTD), a computational method that leverages cell type profiles learned from single-cell RNA-seq to decompose cell type mixtures while correcting for differences across sequencing technologies. We demonstrate the ability of RCTD to detect mixtures and identify cell types on simulated datasets. Furthermore, RCTD accurately reproduces known cell type and subtype localization patterns in Slide-seq and Visium datasets of the mouse brain. Finally, we show how RCTD's recovery of cell type localization enables the discovery of genes within a cell type whose expression depends on spatial environment. Spatial mapping of cell types with RCTD enables the spatial components of cellular identity to be defined, uncovering new principles of cellular organization in biological tissue. RCTD is publicly available as an open-source R package at https://github.com/dmcable/RCTD .

摘要

空间转录组学技术的一个局限性是,单个测量值可能包含多个细胞的贡献,这阻碍了对细胞类型特异性定位和表达空间模式的发现。在这里,我们开发了稳健的细胞类型分解(RCTD),这是一种计算方法,利用从单细胞 RNA-seq 中学习到的细胞类型特征来分解细胞类型混合物,同时纠正不同测序技术之间的差异。我们证明了 RCTD 在模拟数据集上检测混合物和识别细胞类型的能力。此外,RCTD 准确地再现了已知的细胞类型和亚型在小鼠大脑的 Slide-seq 和 Visium 数据集上的定位模式。最后,我们展示了 RCTD 恢复细胞类型定位的能力如何能够发现表达依赖于空间环境的细胞类型内的基因。使用 RCTD 对细胞类型进行空间映射可以定义细胞身份的空间成分,揭示生物组织中细胞组织的新原则。RCTD 作为一个开源 R 包在 https://github.com/dmcable/RCTD 上公开提供。

相似文献

[1]
Robust decomposition of cell type mixtures in spatial transcriptomics.

Nat Biotechnol. 2022-4

[2]
STRIDE: accurately decomposing and integrating spatial transcriptomics using single-cell RNA sequencing.

Nucleic Acids Res. 2022-4-22

[3]
Reference-free cell type deconvolution of multi-cellular pixel-resolution spatially resolved transcriptomics data.

Nat Commun. 2022-4-29

[4]
Cell type-specific inference of differential expression in spatial transcriptomics.

Nat Methods. 2022-9

[5]
De novo analysis of bulk RNA-seq data at spatially resolved single-cell resolution.

Nat Commun. 2022-10-30

[6]
stVAE deconvolves cell-type composition in large-scale cellular resolution spatial transcriptomics.

Bioinformatics. 2023-10-3

[7]
STACAS: Sub-Type Anchor Correction for Alignment in Seurat to integrate single-cell RNA-seq data.

Bioinformatics. 2021-5-5

[8]
DestVI identifies continuums of cell types in spatial transcriptomics data.

Nat Biotechnol. 2022-9

[9]
Spotless, a reproducible pipeline for benchmarking cell type deconvolution in spatial transcriptomics.

Elife. 2024-5-24

[10]
ScType enables fast and accurate cell type identification from spatial transcriptomics data.

Bioinformatics. 2024-7-1

引用本文的文献

[1]
Dynamic fibroblast-immune interactions shape recovery after brain injury.

Nature. 2025-9-3

[2]
ST-deconv: an accurate deconvolution approach for spatial transcriptome data utilizing self-encoding and contrastive learning.

NAR Genom Bioinform. 2025-8-27

[3]
Subcellular spatial transcriptomics reveals immune-stromal crosstalk within the synovium of patients with juvenile idiopathic arthritis.

medRxiv. 2025-8-8

[4]
Spatialsmooth: a spatially-aware convolutional autoencoder framework for enhanced deconvolution of spatial transcriptomics data.

BMC Genomics. 2025-9-1

[5]
A spatial transcriptomics dataset of pancreas sections in normal glucose tolerance and type 2 diabetic donors.

Sci Data. 2025-9-1

[6]
A spatial long-read approach at near-single-cell resolution reveals developmental regulation of splicing and polyadenylation sites in distinct cortical layers and cell types.

Nat Commun. 2025-8-29

[7]
Defining the cell and molecular origins of the primate ovarian reserve.

Nat Commun. 2025-8-26

[8]
Multi-scale and multi-context interpretable mapping of cell states across heterogeneous spatial samples.

Nat Commun. 2025-8-21

[9]
Improving cell-type composition inference in spatial transcriptomics with SpaDAMA.

PLoS Comput Biol. 2025-8-21

[10]
RESCUE: recovery of idiosyncratic expression patterns in spatial transcriptomics.

bioRxiv. 2025-8-15

本文引用的文献

[1]
Statistical analysis of spatial expression patterns for spatially resolved transcriptomic studies.

Nat Methods. 2020-1-27

[2]
Integrating microarray-based spatial transcriptomics and single-cell RNA-seq reveals tissue architecture in pancreatic ductal adenocarcinomas.

Nat Biotechnol. 2020-1-13

[3]
Normalization and variance stabilization of single-cell RNA-seq data using regularized negative binomial regression.

Genome Biol. 2019-12-23

[4]
Feature selection and dimension reduction for single-cell RNA-Seq based on a multinomial model.

Genome Biol. 2019-12-23

[5]
High-definition spatial transcriptomics for in situ tissue profiling.

Nat Methods. 2019-9-9

[6]
Supervised classification enables rapid annotation of cell atlases.

Nat Methods. 2019-9-9

[7]
Accurate estimation of cell-type composition from gene expression data.

Nat Commun. 2019-7-5

[8]
Comprehensive Integration of Single-Cell Data.

Cell. 2019-6-6

[9]
Beyond bulk: a review of single cell transcriptomics methodologies and applications.

Curr Opin Biotechnol. 2019-4-10

[10]
Slide-seq: A scalable technology for measuring genome-wide expression at high spatial resolution.

Science. 2019-3-28

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索