Neuronal Signal Transduction, Max Planck Florida Institute for Neuroscience, Jupiter, Florida 33458
Neuronal Signal Transduction, Max Planck Florida Institute for Neuroscience, Jupiter, Florida 33458.
J Neurosci. 2023 Jul 26;43(30):5432-5447. doi: 10.1523/JNEUROSCI.0208-22.2023. Epub 2023 Jun 5.
The activity-dependent plasticity of synapses is believed to be the cellular basis of learning. These synaptic changes are mediated through the coordination of local biochemical reactions in synapses and changes in gene transcription in the nucleus to modulate neuronal circuits and behavior. The protein kinase C (PKC) family of isozymes has long been established as critical for synaptic plasticity. However, because of a lack of suitable isozyme-specific tools, the role of the novel subfamily of PKC isozymes is largely unknown. Here, through the development of fluorescence lifetime imaging-fluorescence resonance energy transfer activity sensors, we investigate novel PKC isozymes in synaptic plasticity in CA1 pyramidal neurons of mice of either sex. We find that PKCδ is activated downstream of TrkB and DAG production, and that the spatiotemporal nature of its activation depends on the plasticity stimulation. In response to single-spine plasticity, PKCδ is activated primarily in the stimulated spine and is required for local expression of plasticity. However, in response to multispine stimulation, a long-lasting and spreading activation of PKCδ scales with the number of spines stimulated and, by regulating cAMP response-element binding protein activity, couples spine plasticity to transcription in the nucleus. Thus, PKCδ plays a dual functional role in facilitating synaptic plasticity. Synaptic plasticity, or the ability to change the strength of the connections between neurons, underlies learning and memory and is critical for brain health. The protein kinase C (PKC) family is central to this process. However, understanding how these kinases work to mediate plasticity has been limited by a lack of tools to visualize and perturb their activity. Here, we introduce and use new tools to reveal a dual role for PKCδ in facilitating local synaptic plasticity and stabilizing this plasticity through spine-to-nucleus signaling to regulate transcription. This work provides new tools to overcome limitations in studying isozyme-specific PKC function and provides insight into molecular mechanisms of synaptic plasticity.
突触的活动依赖性可塑性被认为是学习的细胞基础。这些突触变化是通过协调突触内的局部生化反应和核内基因转录的变化来调节神经元回路和行为来实现的。蛋白激酶 C(PKC)同工酶家族长期以来一直被认为是突触可塑性的关键。然而,由于缺乏合适的同工酶特异性工具,新型 PKC 同工酶亚家族的作用在很大程度上尚不清楚。在这里,我们通过开发荧光寿命成像-荧光共振能量转移活性传感器,研究了新型 PKC 同工酶在雄性和雌性小鼠 CA1 锥体神经元中的突触可塑性中的作用。我们发现 PKCδ在 TrkB 和 DAG 产生的下游被激活,其激活的时空性质取决于可塑性刺激。对于单棘突可塑性,PKCδ主要在受刺激的棘突中被激活,并且对于局部表达可塑性是必需的。然而,对于多棘突刺激,PKCδ 的长时间和扩散激活与受刺激棘突的数量成正比,并通过调节 cAMP 反应元件结合蛋白的活性,将棘突可塑性与核内转录相耦联。因此,PKCδ 在促进突触可塑性方面发挥双重功能。突触可塑性,或神经元之间连接强度改变的能力,是学习和记忆的基础,对大脑健康至关重要。蛋白激酶 C(PKC)家族是这一过程的核心。然而,由于缺乏可视化和干扰其活性的工具,理解这些激酶如何介导可塑性一直受到限制。在这里,我们引入并使用新工具来揭示 PKCδ 在促进局部突触可塑性方面的双重作用,以及通过棘突-核信号稳定这种可塑性以调节转录的作用。这项工作为克服研究同工酶特异性 PKC 功能的限制提供了新的工具,并为突触可塑性的分子机制提供了新的见解。