Discipline of Physiology, School of Medical Sciences, Faculty of Medicine and Health, The University of Sydney, Sydney, NSW, 2006, Australia.
, PO Box 152, Killara, NSW, 2071, Australia.
J Comp Physiol B. 2023 Aug;193(4):355-382. doi: 10.1007/s00360-023-01499-0. Epub 2023 Jun 5.
The kinetics of myosin controls the speed and power of muscle contraction. Mammalian skeletal muscles express twelve kinetically different myosin heavy chain (MyHC) genes which provides a wide range of muscle speeds to meet different functional demands. Myogenic progenitors from diverse craniofacial and somitic mesoderm specify muscle allotypes with different repertoires for MyHC expression. This review provides a brief synopsis on the historical and current views on how cell lineage, neural impulse patterns, and thyroid hormone influence MyHC gene expression in muscles of the limb allotype during development and in adult life and the molecular mechanisms thereof. During somitic myogenesis, embryonic and foetal myoblast lineages form slow and fast primary and secondary myotube ontotypes which respond differently to postnatal neural and thyroidal influences to generate fully differentiated fibre phenotypes. Fibres of a given phenotype may arise from myotubes of different ontotypes which retain their capacity to respond differently to neural and thyroidal influences during postnatal life. This gives muscles physiological plasticity to adapt to fluctuations in thyroid hormone levels and patterns of use. The kinetics of MyHC isoforms vary inversely with animal body mass. Fast 2b fibres are specifically absent in muscles involved in elastic energy saving in hopping marsupials and generally absent in large eutherian mammals. Changes in MyHC expression are viewed in the context of the physiology of the whole animal. The roles of myoblast lineage and thyroid hormone in regulating MyHC gene expression are phylogenetically the most ancient while that of neural impulse patterns the most recent.
肌球蛋白的动力学控制着肌肉收缩的速度和力量。哺乳动物的骨骼肌表达十二种动力学上不同的肌球蛋白重链(MyHC)基因,这为满足不同的功能需求提供了广泛的肌肉速度范围。来自不同颅面和体节中胚层的成肌祖细胞指定了具有不同 MyHC 表达谱的肌肉同种型。这篇综述简要概述了细胞谱系、神经冲动模式和甲状腺激素如何影响肢体同种型肌肉中 MyHC 基因在发育过程中和成年后的表达,以及其中的分子机制。在体节成肌过程中,胚胎和成体的成肌细胞谱系形成慢和快的原发性和继发性肌管同种型,它们对出生后的神经和甲状腺影响的反应不同,从而产生完全分化的纤维表型。给定表型的纤维可能来自不同同种型的肌管,这些肌管在出生后仍然具有对神经和甲状腺影响做出不同反应的能力。这赋予了肌肉生理上的可塑性,以适应甲状腺激素水平和使用模式的波动。MyHC 同工型的动力学与动物体重呈反比。快速 2b 纤维专门不存在于参与跳跃有袋类动物弹性能量节约的肌肉中,通常也不存在于大型真兽类哺乳动物中。MyHC 表达的变化是在整个动物生理学的背景下观察到的。成肌细胞谱系和甲状腺激素在调节 MyHC 基因表达中的作用在系统发育上是最古老的,而神经冲动模式的作用则是最近的。