Suppr超能文献

腔内缝合练习的自动性能评估。

Automatic performance evaluation of the intracorporeal suture exercise.

机构信息

Faculty of Data and Decision Sciences, Technion - Israel Institute of Technology, 3200003, Haifa, Israel.

Department of General Surgery, Bnai-Zion Medical Center, Haifa, Israel.

出版信息

Int J Comput Assist Radiol Surg. 2024 Jan;19(1):83-86. doi: 10.1007/s11548-023-02963-6. Epub 2023 Jun 6.

Abstract

PURPOSE

This work uses deep learning algorithms to provide automated feedback on the suture with intracorporeal knot exercise in the fundamentals of laparoscopic surgery simulator. Different metrics were designed to provide informative feedback to the user on how to complete the task more efficiently. The automation of the feedback will allow students to practice at any time without the supervision of experts.

METHODS

Five residents and five senior surgeons participated in the study. Object detection, image classification, and semantic segmentation deep learning algorithms were used to collect statistics on the practitioner's performance. Three task-specific metrics were defined. The metrics refer to the way the practitioner holds the needle before the insertion to the Penrose drain, and the amount of movement of the Penrose drain during the needle's insertion.

RESULTS

Good agreement between the human labeling and the different algorithms' performance and metric values was achieved. The difference between the scores of the senior surgeons and the surgical residents was statistically significant for one of the metrics.

CONCLUSION

We developed a system that provides performance metrics of the intracorporeal suture exercise. These metrics can help surgical residents practice independently and receive informative feedback on how they entered the needle into the Penrose.

摘要

目的

本研究利用深度学习算法,为腹腔镜手术基础训练模拟器中的腔内打结练习提供自动化反馈。设计了不同的指标,以便为用户提供如何更高效地完成任务的信息反馈。这种反馈的自动化将允许学生在没有专家监督的情况下随时进行练习。

方法

5 名住院医师和 5 名资深外科医生参与了这项研究。使用目标检测、图像分类和语义分割深度学习算法来收集医生操作表现的统计数据。定义了三个特定于任务的指标。这些指标是指在插入彭罗斯引流管之前医生握持针的方式,以及在插入针时彭罗斯引流管的移动量。

结果

人类标记与不同算法的性能和度量值之间达成了良好的一致性。对于其中一个指标,资深外科医生和外科住院医师的得分差异具有统计学意义。

结论

我们开发了一种提供腔内缝合练习性能指标的系统。这些指标可以帮助外科住院医师独立练习,并获得有关他们如何将针插入彭罗斯引流管的有意义的反馈。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验