Department of Chemical and Biological Engineering, University of Wisconsin-Madison, Madison, Wisconsin 53706, United States.
Department of Chemistry, University of Wisconsin-Madison, Madison, Wisconsin 53706, United States.
J Am Chem Soc. 2023 Jun 28;145(25):13742-13749. doi: 10.1021/jacs.3c02108. Epub 2023 Jun 6.
Electrocatalysis plays a critical role in future technologies for energy storage and sustainable synthesis, but the scope of reactions achievable using electricity remains limited. Here, we demonstrate an electrocatalytic approach to cleave the C(sp)-C(sp) bond in ethane at room temperature over a nanoporous Pt catalyst. This reaction is enabled by time-dependent electrode potential sequences, combined with monolayer-sensitive in situ analysis, which allows us to gain independent control over ethane adsorption, oxidative C-C bond fragmentation, and reductive methane desorption. Importantly, our approach allows us to vary the electrode potential to promote the fragmentation of ethane , resulting in unprecedented control over the selectivity of this alkane transformation reaction. Steering the transformation of intermediates after adsorption constitutes an underexplored lever of control in catalysis. As such, our findings widen the parameter space for catalytic reaction engineering and open the door to future sustainable synthesis and electrocatalytic energy storage technologies.
电催化在未来的储能和可持续合成技术中起着关键作用,但利用电能实现的反应范围仍然有限。在这里,我们展示了一种在室温下使用多孔 Pt 催化剂裂解乙烷中 C(sp)-C(sp)键的电催化方法。这种反应是通过随时间变化的电极电势序列和单层敏感的原位分析来实现的,这使我们能够独立控制乙烷的吸附、氧化 C-C 键的断裂和还原甲烷的脱附。重要的是,我们的方法允许我们改变电极电势以促进乙烷的断裂,从而对这种烷烃转化反应的选择性进行前所未有的控制。在吸附后改变中间体的转化构成了催化控制中一个尚未充分探索的杠杆。因此,我们的发现拓宽了催化反应工程的参数空间,并为未来的可持续合成和电催化储能技术打开了大门。