Dipartimento di Fisica, Università di Genova, Via Dodecaneso 33, I-16136 Genova, Italy.
Facultad de Ciencia e Ingeniería en Alimentos, Universidad Tecnica de Ambato, 180207 Ambato, Ecuador.
Nanotechnology. 2023 Jun 23;34(36). doi: 10.1088/1361-6528/acdbd4.
Following defocused ion beam sputtering, large area highly corrugated and faceted nanoripples are formed on calcite (10.4) faces in a self-organized fashion. High resolution atomic force microscopy (AFM) imaging reveals that calcite ripples are defined by facets with highly kinked (11.0) and (21¯.12) terminations.AFM imaging during the exposure of such modified calcite surfaces to PbClaqueous solution reveals that the nanostructured calcite surface promotes the uptake of Pb. In addition, we observed the progressive smoothing of the highly reactive calcite facet terminations and the formation of Pb-bearing precipitates elongated in registry with the underlying nanopattern. By SEM-EDS analysis we quantified a remarkable 500% increase of the Pb uptake rate, up to 0.5 atomic weight % per hour, on the nanorippled calcite in comparison to its freshly cleaved (10.4) surfaces. These results suggest that nanostructurated calcite surfaces can be used for developing future systems for lead sequestration from polluted waters.
在离焦离子束溅射之后,方解石(10.4)表面以自组织的方式形成大面积的高度波纹状和多面纳米脊。高分辨率原子力显微镜(AFM)成像表明,方解石脊由具有高度扭折的(11.0)和(21¯.12)末端的面定义。在将这种改性方解石表面暴露于 PbClaqueous 溶液的过程中进行 AFM 成像,表明纳米结构的方解石表面促进了 Pb 的吸收。此外,我们观察到高反应性方解石面末端的逐渐平滑以及与底层纳米图案一致的 Pb 承载沉淀物的形成。通过 SEM-EDS 分析,我们定量地发现,与新劈开的(10.4)表面相比,纳米波纹状方解石的 Pb 吸收速率显著提高了 500%,达到每小时 0.5 原子重量%。这些结果表明,纳米结构化方解石表面可用于开发从污染水中捕获 Pb 的未来系统。