†Chemistry Division, US Naval Research Laboratory, 4555 Overlook Avenue SW, Washington, DC 20375, United States.
‡Center for Bio/Molecular Science and Engineering, US Naval Research Laboratory, 4555 Overlook Avenue SW, Washington, DC 20375, United States.
ACS Nano. 2015 Jun 23;9(6):5782-91. doi: 10.1021/acsnano.5b01870. Epub 2015 May 20.
The recognition of atomically distinct surface features by adsorbed biomolecules is central to the formation of surface-templated peptide or protein nanostructures. On mineral surfaces such as calcite, biomolecular recognition of, and self-assembly on, distinct atomic kinks and steps could additionally orchestrate changes to the overall shape and symmetry of a bulk crystal. In this work, we show through in situ atomic force microscopy (AFM) experiments that an acidic 20 kDa cement protein from the barnacle Megabalanus rosa (MRCP20) binds specifically to step edge atoms on {101̅4} calcite surfaces, remains bound and further assembles over time to form one-dimensional nanofibrils. Protein nanofibrils are continuous and organized at the nanoscale, exhibiting striations with a period of ca. 45 nm. These fibrils, templated by surface steps of a preferred geometry, in turn selectively dissolve underlying calcite features displaying the same atomic arrangement. To demonstrate this, we expose the protein solution to bare and fibril-associated rhombohedral etch pits to reveal that nanofibrils accelerate only the movement of fibril-forming steps when compared to undecorated steps exposed to the same solution conditions. Calcite mineralized in the presence of MRCP20 results in asymmetric crystals defined by frustrated faces with shared mirror symmetry, suggesting a similar step-selective behavior by MRCP20 in crystal growth. As shown here, selective surface interactions with step edge atoms lead to a cooperative regime of calcite modification, where templated long-range protein nanostructures shape crystals.
吸附生物分子对原子尺度表面特征的识别是形成表面模板化肽或蛋白质纳米结构的核心。在方解石等矿物表面上,生物分子对原子扭折和台阶的特异性识别和自组装,还可以协调大块晶体整体形状和对称性的变化。在这项工作中,我们通过原位原子力显微镜(AFM)实验表明,藤壶Megabalanus rosa 的一种酸性 20 kDa 水泥蛋白(MRCP20)特异性结合到 {101̅4} 方解石表面的台阶边缘原子上,随着时间的推移保持结合并进一步组装,形成一维纳米纤维。蛋白质纳米纤维在纳米尺度上连续且有序,呈现出约 45nm 的条纹。这些由表面台阶模板化的纤维,反过来又选择性地溶解具有相同原子排列的下方方解石特征。为了证明这一点,我们将蛋白质溶液暴露于裸露的和与纤维相关的菱面体腐蚀坑,以表明与暴露于相同溶液条件的未修饰台阶相比,纳米纤维仅加速纤维形成台阶的移动。在 MRCP20 存在下矿化的方解石导致具有共享镜像对称的受挫面定义的不对称晶体,表明 MRCP20 在晶体生长中具有类似的台阶选择性行为。如这里所示,与台阶边缘原子的选择性表面相互作用导致方解石修饰的协同状态,其中模板化的长程蛋白质纳米结构塑造晶体。