Suppr超能文献

全球历史(1951-2010 年)海浪高度的 100 成员集合模拟。

A 100-member ensemble simulations of global historical (1951-2010) wave heights.

机构信息

Climate Research Division, Science and Technology Branch, Environment and Climate Change Canada, Toronto, Ontario, Canada.

Disaster Prevention Research Institute, Kyoto University, Kyoto, Japan.

出版信息

Sci Data. 2023 Jun 6;10(1):362. doi: 10.1038/s41597-023-02058-6.

Abstract

The d4PDF-WaveHs dataset represents the first single model initial-condition large ensemble of historical significant ocean wave height (H) at a global scale. It was produced using an advanced statistical model with predictors derived from Japan's d4PDF ensemble of historical simulations of sea level pressure. d4PDF-WaveHs provides 100 realizations of H for the period 1951-2010 (hence 6,000 years of data) on a 1° × 1° lat.-long. grid. Technical comparison of model skill against modern reanalysis and other historical wave datasets was undertaken at global and regional scales. d4PDF-WaveHs provides unique data to understand better the poorly known role of internal climate variability in ocean wave climate, which can be used to estimate better trend signals. It also provides a better sampling of extreme events. Overall, this is crucial to properly assess wave-driven impacts, such as extreme sea levels on low-lying populated coastal areas. This dataset may be of interest to a variety of researchers, engineers and stakeholders in the fields of climate science, oceanography, coastal management, offshore engineering, and energy resource development.

摘要

d4PDF-WaveHs 数据集代表了第一个在全球范围内针对历史重大海浪高度 (H) 的单一模型初始条件大集合。它是使用一种先进的统计模型生成的,该模型的预测因子来自日本海平面压力 d4PDF 集合的历史模拟。d4PDF-WaveHs 在 1°×1°经纬度网格上为 1951-2010 年期间提供了 100 次 H 的实现(即 6000 年的数据)。在全球和区域范围内,对模型技能与现代再分析和其他历史海浪数据集的技术比较进行了研究。d4PDF-WaveHs 提供了独特的数据,有助于更好地了解内部气候变率在海洋波气候中的作用,这可以用来更好地估计趋势信号。它还提供了对极端事件的更好抽样。总的来说,这对于正确评估海浪驱动的影响至关重要,例如对人口稠密的沿海低地地区的极端海平面的影响。这个数据集可能会引起气候科学、海洋学、沿海管理、海上工程和能源资源开发等领域的各种研究人员、工程师和利益相关者的兴趣。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/467d/10244329/499395cd296f/41597_2023_2058_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验