Suppr超能文献

经皮冠状动脉介入治疗患者支架内再狭窄风险预测列线图的建立与验证。

Development and validation of a risk prediction nomogram for in-stent restenosis in patients undergoing percutaneous coronary intervention.

机构信息

Department of Cardiology, Renmin Hospital of Wuhan University, 238 Jiefang Road, Wuchang, Wuhan, 430060, People's Republic of China.

Cardiovascular Research Institute of Wuhan University, Wuhan, China.

出版信息

BMC Cardiovasc Disord. 2021 Sep 14;21(1):435. doi: 10.1186/s12872-021-02255-4.

Abstract

BACKGROUND

This study aimed to develop and validate a nomogram to predict probability of in-stent restenosis (ISR) in patients undergoing percutaneous coronary intervention (PCI).

METHODS

Patients undergoing PCI with drug-eluting stents between July 2009 and August 2011 were retrieved from a cohort study in a high-volume PCI center, and further randomly assigned to training and validation sets. The least absolute shrinkage and selection operator (LASSO) regression model was used to screen out significant features for construction of nomogram. Multivariable logistic regression analysis was applied to build a nomogram-based predicting model incorporating the variables selected in the LASSO regression model. The area under the curve (AUC) of the receiver operating characteristics (ROC), calibration plot and decision curve analysis (DCA) were performed to estimate the discrimination, calibration and utility of the nomogram model respectively.

RESULTS

A total of 463 patients with DES implantation were enrolled and randomized in the development and validation sets. The predication nomogram was constructed with five risk factors including prior PCI, hyperglycemia, stents in left anterior descending artery (LAD), stent type, and absence of clopidogrel, which proved reliable for quantifying risks of ISR for patients with stent implantation. The AUC of development and validation set were 0.706 and 0.662, respectively, indicating that the prediction model displayed moderate discrimination capacity to predict restenosis. The high quality of calibration plots in both datasets demonstrated strong concordance performance of the nomogram model. Moreover, DCA showed that the nomogram was clinically useful when intervention was decided at the possibility threshold of 9%, indicating good utility for clinical decision-making.

CONCLUSIONS

The individualized prediction nomogram incorporating 5 commonly clinical and angiographic characteristics for patients undergoing PCI can be conveniently used to facilitate early identification and improved screening of patients at higher risk of ISR.

摘要

背景

本研究旨在开发和验证一种列线图,以预测行经皮冠状动脉介入治疗(PCI)的患者发生支架内再狭窄(ISR)的概率。

方法

从一个高容量 PCI 中心的队列研究中检索了 2009 年 7 月至 2011 年 8 月期间接受药物洗脱支架置入的患者,并进一步将其随机分配到训练集和验证集中。使用最小绝对收缩和选择算子(LASSO)回归模型筛选出构建列线图的显著特征。应用多变量逻辑回归分析构建包含 LASSO 回归模型中选择的变量的列线图预测模型。通过受试者工作特征(ROC)曲线下面积(AUC)、校准图和决策曲线分析(DCA)分别评估列线图模型的判别、校准和实用性。

结果

共纳入并随机分配了 463 例接受 DES 植入的患者至开发集和验证集中。该预测列线图由五个危险因素构建,包括既往 PCI、高血糖、左前降支(LAD)支架、支架类型和无氯吡格雷,该列线图可可靠地量化支架植入患者的 ISR 风险。开发集和验证集的 AUC 分别为 0.706 和 0.662,表明该预测模型对预测再狭窄具有中等的判别能力。两个数据集的校准图质量均较高,表明列线图模型具有较强的一致性性能。此外,DCA 表明,当决策阈值为 9%时,列线图具有临床应用价值,表明其对临床决策具有良好的应用价值。

结论

该列线图纳入了 5 个常见的临床和血管造影特征,可方便地用于识别和筛选 PCI 患者中 ISR 风险较高的患者。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/d1b0/8442286/07267700f881/12872_2021_2255_Fig1_HTML.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验