Suppr超能文献

两栖动物早期发育中的垂直诱导与平面诱导

Vertical versus planar induction in amphibian early development.

作者信息

Nieuwkoop P D, Koster K

机构信息

Hubrecht Laboratory, Utrecht, the Netherlands.

出版信息

Dev Growth Differ. 1995 Dec;37(6):653-668. doi: 10.1046/j.1440-169X.1995.t01-5-00004.x.

Abstract

In the Urodeles, the archenteron roof invaginates as a single continuous sheet of cells, vertically inducing the neural anlage in the overlying ectoderm during invagination. The induction comprises first the activation process, leading, to forebrain differentiation tendencies, and then the superimposed transformation process, which changes presumptive forebrain development into that of hindbrain and spinal cord acting with a caudally increasing intensity. The activating action, being maximal anteriorly, decreases caudally to nearly zero. In the double-layered Xenopus embryo, the internal mesodermal marginal zone shows much more independent and earlier regional segregation and involution than the external marginal zone in the Urodeles; its prechordal mesoderm already initiating vertical neural induction in overlying ectoderm at stages 10 to 10 before any visible archenteron invagination. In Xenopus incomplete exogastrulae the prechordal mesoderm involutes normally prior to evagination of the endoderm and mesodem. Artificially produced Xenopus total exogastrulae, made at stage 9 before mesoderm involution, behave just like axolotl total exogastrulae, showing no neural differentiation. The notion of planar neural induction in Xenopus can only be applied in exogastrulae and Keller explants for the transforming action, which is maximal in the caudal archenteron roof. In normal Xenopus development, the formation of the entire nervous system is essentially due to vertical induction by the successively involuting prechordal and notochordal mesoderm. The different behavior of Xenopus embryos in comparison with Urodele embryos can essentially be explained by the double-layered character of the animal moiety of the Xenopus embryo.

摘要

在有尾两栖类动物中,原肠顶作为一层连续的细胞向内凹陷,在凹陷过程中垂直诱导覆盖其上的外胚层形成神经原基。这种诱导首先包括激活过程,导致前脑分化倾向,然后是叠加的转化过程,该过程将假定的前脑发育转变为后脑和脊髓的发育,且尾端的作用强度逐渐增加。激活作用在前部最大,向尾端逐渐减弱至几乎为零。在双层的非洲爪蟾胚胎中,内部中胚层边缘区比有尾两栖类动物的外部边缘区表现出更独立且更早的区域分离和内卷;在原肠明显内陷之前的10至10阶段,其脊索前中胚层就已开始在覆盖其上的外胚层中引发垂直神经诱导。在非洲爪蟾不完全外胚层中,脊索前中胚层在内胚层和中胚层外翻之前正常内卷。在中胚层内卷前的第9阶段人工制造的非洲爪蟾完全外胚层,其行为与蝾螈完全外胚层相似,未表现出神经分化。非洲爪蟾平面神经诱导的概念仅适用于外胚层和凯勒外植体的转化作用,这种作用在尾端原肠顶最大。在正常的非洲爪蟾发育过程中,整个神经系统的形成主要归因于相继内卷的脊索前和脊索中胚层的垂直诱导。与有尾两栖类胚胎相比,非洲爪蟾胚胎的不同行为基本上可以由非洲爪蟾胚胎动物部分的双层特征来解释。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验