Grunz H, Schüren C, Richter K
Department of Zoophysiology, University GH Essen, Germany.
Int J Dev Biol. 1995 Jun;39(3):539-43.
The classical Einsteck-test (Spemann and Mangold, Roux Arch. Dev. Biol. 100: 599-638, 1924) and data from total exogastrulae (Holtfreter, 1933) suggest that vertical signals are transmitted between the chordamesoderm (organizer) and reacting ectoderm in the early phase of neural induction. In contrast to these results with Axoloti (urodeles), several authors observed the expression of neural specific genes in Xenopus exogastrulae, isolated dorsal blastopore lip with adjacent ectoderm (open-face explants) and Keller-sandwiches. Our data with Xenopus (anurans) also show that the expression of neural specific genes takes place in exogastrulae. However, when we prepared open face explants and exogastrula-like structures by microdissection at very early gastrula stage, the signal of a class II beta-tubulin, characteristic of terminal neural differentiation, is not found in the ectoderm. These results suggest that planar signals transmitted from the chordamesoderm into the ectodermal part can fairly be excluded under these experimental conditions. In similar experiments with Triturus alpestris we could not observe either the differentiation of neural structures in the ectodermal part of exogastrulae. These results confirm earlier experiments of Holtfreter performed with Ambystoma mexicanum (Axoltl) embryos. On the basis of the published data of different authors and our results, we cannot exclude the existence of planar signals for early and/or transient expressed genes before the onset of gastrulation in Xenopus, which make the neuroectoderm susceptible for the response to vertical signals during gastrulation. On the other hand our experiments with Triturus alpestris suggest that planar neural signals are unlikely in this species. These differences between Triturus and Xenopus embryos are discussed in the context of the peculiarities in morphological structure, competence and speed of development of the two species.
经典的嵌入试验(施佩曼和曼戈尔德,《鲁克斯发育生物学文献》100: 599 - 638, 1924)以及全外胚层囊胚的数据(霍尔特弗雷特尔,1933)表明,在神经诱导早期,垂直信号在脊索中胚层(组织者)和反应外胚层之间传递。与用美西螈(有尾目)得到的这些结果不同,几位作者在非洲爪蟾外胚层囊胚、分离的背侧胚孔唇及其相邻外胚层(开放面外植体)和凯勒三明治结构中观察到了神经特异性基因的表达。我们用非洲爪蟾(无尾目)得到的数据也表明,神经特异性基因在外胚层囊胚中表达。然而,当我们在极早期原肠胚阶段通过显微切割制备开放面外植体和外胚层囊胚样结构时,在外胚层中未发现典型的终末神经分化的Ⅱ类β - 微管蛋白信号。这些结果表明,在这些实验条件下,可以相当肯定地排除从脊索中胚层传递到外胚层部分的平面信号。在用高山螈进行的类似实验中,我们也未观察到外胚层囊胚外胚层部分神经结构的分化。这些结果证实了霍尔特弗雷特尔早期用墨西哥钝口螈(美西螈)胚胎所做的实验。根据不同作者已发表的数据和我们的结果,我们不能排除在非洲爪蟾原肠胚形成开始之前,存在针对早期和/或瞬时表达基因的平面信号,这些信号使神经外胚层在原肠胚形成期间易于对垂直信号作出反应。另一方面,我们用高山螈所做的实验表明,在这个物种中不太可能存在平面神经信号。结合这两个物种在形态结构、感受态和发育速度方面的特点,讨论了高山螈和非洲爪蟾胚胎之间的这些差异。