Department of Developmental and Stem Cell Biology, Institut Pasteur, Université de Paris Cité, CNRS UMR 3738, 25 rue du Dr. Roux, 75015 Paris, France.
Development. 2023 Jul 1;150(13). doi: 10.1242/dev.201747. Epub 2023 Jun 30.
Accurately counting and localising cellular events from movies is an important bottleneck of high-content tissue/embryo live imaging. Here, we propose a new methodology based on deep learning that allows automatic detection of cellular events and their precise xyt localisation on live fluorescent imaging movies without segmentation. We focused on the detection of cell extrusion, the expulsion of dying cells from the epithelial layer, and devised DeXtrusion: a pipeline based on recurrent neural networks for automatic detection of cell extrusion/cell death events in large movies of epithelia marked with cell contour. The pipeline, initially trained on movies of the Drosophila pupal notum marked with fluorescent E-cadherin, is easily trainable, provides fast and accurate extrusion predictions in a large range of imaging conditions, and can also detect other cellular events, such as cell division or cell differentiation. It also performs well on other epithelial tissues with reasonable re-training. Our methodology could easily be applied for other cellular events detected by live fluorescent microscopy and could help to democratise the use of deep learning for automatic event detections in developing tissues.
准确地从电影中计数和定位细胞事件是高内涵组织/胚胎活成像的一个重要瓶颈。在这里,我们提出了一种基于深度学习的新方法,允许在不进行分割的情况下,自动检测细胞事件,并精确地定位其 xyt 在活荧光成像电影上的位置。我们专注于检测细胞挤压,即垂死细胞从上皮层中挤出,设计了 DeXtrusion:一个基于递归神经网络的管道,用于自动检测用细胞轮廓标记的大上皮电影中的细胞挤压/细胞死亡事件。该管道最初在标记有荧光 E-钙粘蛋白的果蝇蛹背板电影上进行训练,易于训练,可在广泛的成像条件下快速准确地预测挤压,还可以检测其他细胞事件,如细胞分裂或细胞分化。它在其他具有合理重新训练的上皮组织上也表现良好。我们的方法可以很容易地应用于通过活荧光显微镜检测到的其他细胞事件,并有助于使深度学习在发育组织中的自动事件检测民主化。