Nonequilibrium Physics of Living Matter RIKEN Hakubi Research Team, RIKEN Center for Biosystems Dynamics Research, Kobe, Japan.
Department of Genetics, Yale School of Medicine, New Haven, Connecticut, United States of America.
PLoS Comput Biol. 2022 Sep 6;18(9):e1010477. doi: 10.1371/journal.pcbi.1010477. eCollection 2022 Sep.
Robustness in developing and homeostatic tissues is supported by various types of spatiotemporal cell-to-cell interactions. Although live imaging and cell tracking are powerful in providing direct evidence of cell coordination rules, extracting and comparing these rules across many tissues with potentially different length and timescales of coordination requires a versatile framework of analysis. Here we demonstrate that graph neural network (GNN) models are suited for this purpose, by showing how they can be applied to predict cell fate in tissues and utilized to infer the cell interactions governing the multicellular dynamics. Analyzing the live mammalian epidermis data, where spatiotemporal graphs constructed from cell tracks and cell contacts are given as inputs, GNN discovers distinct neighbor cell fate coordination rules that depend on the region of the body. This approach demonstrates how the GNN framework is powerful in inferring general cell interaction rules from live data without prior knowledge of the signaling involved.
在发育和稳态组织中,各种类型的时空细胞间相互作用支持其稳定性。虽然实时成像和细胞跟踪在提供细胞协调规则的直接证据方面非常强大,但提取和比较这些规则在具有潜在不同协调长度和时间尺度的许多组织中,需要一个通用的分析框架。在这里,我们通过展示它们如何应用于预测组织中的细胞命运,并利用它们来推断控制细胞多态动力学的细胞相互作用,证明了图神经网络(GNN)模型非常适合这个目的。分析活体哺乳动物表皮数据,其中从细胞轨迹和细胞接触构建的时空图作为输入,GNN 发现了依赖于身体部位的不同邻域细胞命运协调规则。这种方法展示了 GNN 框架如何在没有涉及信号的先验知识的情况下,从实时数据中推断出一般的细胞相互作用规则。