Leeds Institute of Medical Research, School of Medicine, University of Leeds, St James's University Hospital, Wellcome Trust Brenner Building, Beckett Street, Leeds, LS9 7TF, UK.
Department of Medical Genetics, School of Medicine, King Abdulaziz University, Rabigh, Kingdom of Saudi Arabia.
Mol Diagn Ther. 2023 Jul;27(4):525-535. doi: 10.1007/s40291-023-00656-z. Epub 2023 Jun 7.
RPGR ORF15 is an exon present almost exclusively in the retinal transcript of RPGR. It is purine-rich, repetitive and notoriously hard to sequence, but is a hotspot for mutations causing X-linked retinitis pigmentosa.
Long-read nanopore sequencing on MinION and Flongle flow cells was used to sequence RPGR ORF15 in genomic DNA from patients with inherited retinal dystrophy. A flow cell wash kit was used on a MinION flow cell to increase yield. Findings were confirmed by PacBio SMRT long-read sequencing.
We showed that long-read nanopore sequencing successfully reads through a 2 kb PCR-amplified fragment containing ORF15. We generated reads of sufficient quality and cumulative read-depth to detect pathogenic RP-causing variants. However, we observed that this G-rich, repetitive DNA segment rapidly blocks the available pores, resulting in sequence yields less than 5% of the expected output. This limited the extent to which samples could be pooled, increasing cost. We tested the utility of a MinION wash kit containing DNase I to digest DNA fragments remaining on the flow cell, regenerating the pores. Use of the DNase I treatment allowed repeated re-loading, increasing the sequence reads obtained. Our customised workflow was used to screen pooled amplification products from previously unsolved inherited retinal disease (IRD) in patients, identifying two new cases with pathogenic ORF15 variants.
We report the novel finding that long-read nanopore sequencing can read through RPGR-ORF15, a DNA sequence not captured by short-read next-generation sequencing (NGS), but with a more reduced yield. Use of a flow cell wash kit containing DNase I unblocks the pores, allowing reloading of further library aliquots over a 72-h period, increasing yield. The workflow we describe provides a novel solution to the need for a rapid, robust, scalable, cost-effective ORF15 screening protocol.
RPGR ORF15 是 RPGR 视网膜转录本中几乎仅存在的一个外显子。它富含嘌呤,重复出现,测序难度大,但却是导致 X 连锁视网膜色素变性的突变热点。
使用 MinION 和 Flongle 流动池上的长读长纳米孔测序对遗传性视网膜营养不良患者的基因组 DNA 中的 RPGR ORF15 进行测序。使用 MinION 流动池上的流动池洗涤试剂盒来提高产量。通过 PacBio SMRT 长读测序对结果进行确认。
我们表明,长读长纳米孔测序能够成功读取包含 ORF15 的 2kb PCR 扩增片段。我们生成了足够质量和累积读深的读数,以检测致病变异。然而,我们观察到,这个富含 G 的重复 DNA 片段会迅速堵塞可用的孔,导致序列产量低于预期输出的 5%。这限制了样本可以混合的程度,增加了成本。我们测试了含有 DNase I 的 MinION 洗涤试剂盒的实用性,以消化留在流动池上的 DNA 片段,再生孔。使用 DNase I 处理允许重复重新加载,从而增加获得的序列读数。我们的定制工作流程用于筛选来自先前未解决的遗传性视网膜疾病 (IRD) 患者的 pooled 扩增产物,鉴定出两个具有致病性 ORF15 变异的新病例。
我们报告了一个新发现,即长读长纳米孔测序可以读取 RPGR-ORF15,这是短读长下一代测序 (NGS) 无法捕获的 DNA 序列,但产量更低。使用含有 DNase I 的流动池洗涤试剂盒可疏通孔道,允许在 72 小时内重新加载更多的文库等分试样,从而提高产量。我们描述的工作流程为快速、稳健、可扩展、具有成本效益的 ORF15 筛选方案提供了一种新的解决方案。