Biology Department, Woods Hole Oceanographic Institution, Woods Hole, Massachusetts, USA.
Institute for Ecological Monitoring and Management, San Diego State University, San Diego, California, USA.
Ecol Appl. 2023 Sep;33(6):e2893. doi: 10.1002/eap.2893. Epub 2023 Jul 10.
Species distribution models (SDMs) are becoming an important tool for marine conservation and management. Yet while there is an increasing diversity and volume of marine biodiversity data for training SDMs, little practical guidance is available on how to leverage distinct data types to build robust models. We explored the effect of different data types on the fit, performance and predictive ability of SDMs by comparing models trained with four data types for a heavily exploited pelagic fish, the blue shark (Prionace glauca), in the Northwest Atlantic: two fishery dependent (conventional mark-recapture tags, fisheries observer records) and two fishery independent (satellite-linked electronic tags, pop-up archival tags). We found that all four data types can result in robust models, but differences among spatial predictions highlighted the need to consider ecological realism in model selection and interpretation regardless of data type. Differences among models were primarily attributed to biases in how each data type, and the associated representation of absences, sampled the environment and summarized the resulting species distributions. Outputs from model ensembles and a model trained on all pooled data both proved effective for combining inferences across data types and provided more ecologically realistic predictions than individual models. Our results provide valuable guidance for practitioners developing SDMs. With increasing access to diverse data sources, future work should further develop truly integrative modeling approaches that can explicitly leverage the strengths of individual data types while statistically accounting for limitations, such as sampling biases.
物种分布模型(SDM)正成为海洋保护和管理的重要工具。然而,尽管用于训练 SDM 的海洋生物多样性数据的多样性和数量不断增加,但关于如何利用不同数据类型来构建稳健模型的实际指导却很少。我们通过比较在西北大西洋高度开发的远洋鱼类——蓝鲨(Prionace glauca)的四种数据类型训练的模型,探讨了不同数据类型对 SDM 拟合、性能和预测能力的影响:两种渔业相关(传统标记重捕标签、渔业观察员记录)和两种渔业独立(卫星链接电子标签、弹出式档案标签)。我们发现,所有四种数据类型都可以产生稳健的模型,但空间预测之间的差异突出表明,无论数据类型如何,在模型选择和解释时都需要考虑生态现实。模型之间的差异主要归因于每种数据类型以及相关的缺失样本、环境采样和总结物种分布的方式存在偏差。模型集合的输出和基于所有汇总数据训练的模型都被证明可以有效地结合不同数据类型的推断,并提供比单个模型更符合生态现实的预测。我们的研究结果为开发 SDM 的从业者提供了有价值的指导。随着对各种数据源的访问不断增加,未来的工作应进一步开发真正的综合建模方法,这些方法可以在统计上考虑到各种数据类型的优势,同时考虑到抽样偏差等限制。