Suppr超能文献

人工智能、大数据与心脏移植:现状

Artificial intelligence, big data and heart transplantation: Actualities.

机构信息

Azienda Ospedaliera dei Colli Monaldi-Cotugno-CTO, Department of Cardiac Surgery and Transplantation, Naples, Italy.

Division of Cardiothoracic Intensive Care, Cardiothoracic Department, ASST Spedali Civili, Brescia, Italy.

出版信息

Int J Med Inform. 2023 Aug;176:105110. doi: 10.1016/j.ijmedinf.2023.105110. Epub 2023 May 25.

Abstract

BACKGROUND

As diagnostic and prognostic models developed by traditional statistics perform poorly in real-world, artificial intelligence (AI) and Big Data (BD) may improve the supply chain of heart transplantation (HTx), allocation opportunities, correct treatments, and finally optimize HTx outcome. We explored available studies, and discussed opportunities and limits of medical application of AI to the field of HTx.

METHOD

A systematic overview of studies published up to December 31st, 2022, in English on peer-revied journals, have been identified through PUBMED-MEDLINE-WEB of Science, referring to HTx, AI, BD. Studies were grouped in 4 domains based on main studies' objectives and results: etiology, diagnosis, prognosis, treatment. A systematic attempt was made to evaluate studies by the Prediction model Risk Of Bias ASsessment Tool (PROBAST) and the Transparent Reporting of a multivariable prediction model for Individual Prognosis Or Diagnosis (TRIPOD).

RESULTS

Among the 27 publications selected, none used AI applied to BD. Of the selected studies, 4 fell in the domain of etiology, 6 in the domain of diagnosis, 3 in the domain of treatment, and 17 in that of prognosis, as AI was most frequently used for algorithmic prediction and discrimination of survival, but in retrospective cohorts and registries. AI-based algorithms appeared superior to probabilistic functions to predict patterns, but external validation was rarely employed. Indeed, based on PROBAST, selected studies showed, to some extent, significant risk of bias (especially in the domain of predictors and analysis). In addition, as example of applicability in the real-world, a free-use prediction algorithm developed through AI failed to predict 1-year mortality post-HTx in cases from our center.

CONCLUSIONS

While AI-based prognostic and diagnostic functions performed better than those developed by traditional statistics, risk of bias, lack of external validation, and relatively poor applicability, may affect AI-based tools. More unbiased research with high quality BD meant for AI, transparency and external validations, are needed to have medical AI as a systematic aid to clinical decision making in HTx.

摘要

背景

由于传统统计学开发的诊断和预后模型在实际应用中表现不佳,人工智能(AI)和大数据(BD)可能会改善心脏移植(HTx)的供应链、分配机会、正确的治疗方法,最终优化 HTx 的结果。我们探讨了现有的研究,并讨论了 AI 在 HTx 领域的医学应用的机会和限制。

方法

通过 PUBMED-MEDLINE-WEB of Science 对截至 2022 年 12 月 31 日在同行评审期刊上发表的英文研究进行了系统综述,检索词包括 HTx、AI、BD。根据主要研究目的和结果,将研究分为 4 个领域:病因、诊断、预后、治疗。我们试图通过预测模型风险偏倚评估工具(PROBAST)和用于个体预后或诊断的多变量预测模型的透明报告(TRIPOD)对研究进行系统评估。

结果

在选择的 27 篇文献中,没有一篇使用 AI 应用于 BD。在选择的研究中,4 项研究属于病因领域,6 项研究属于诊断领域,3 项研究属于治疗领域,17 项研究属于预后领域,因为 AI 最常用于算法预测和生存结果的区分,但都是基于回顾性队列和注册研究。基于 AI 的算法在预测模式方面似乎优于概率函数,但很少进行外部验证。事实上,根据 PROBAST,所选研究在一定程度上存在显著的偏倚风险(尤其是在预测因子和分析领域)。此外,作为在实际中应用的一个例子,我们中心开发的一个免费使用的 AI 预测算法未能预测 HTx 后 1 年的死亡率。

结论

虽然基于 AI 的预后和诊断功能比传统统计学开发的功能表现更好,但偏倚风险、缺乏外部验证和相对较差的适用性可能会影响 AI 工具。为了使 AI 成为 HTx 临床决策的系统辅助手段,需要进行更多无偏倚、高质量的 BD 研究,以实现 AI 的透明度和外部验证。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验