Suppr超能文献

学校暴力自动评估中的偏差研究。

Investigation of bias in the automated assessment of school violence.

机构信息

Division of Biomedical Informatics, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA.

Division of Biomedical Informatics, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA.

出版信息

J Biomed Inform. 2024 Sep;157:104709. doi: 10.1016/j.jbi.2024.104709. Epub 2024 Aug 15.

Abstract

OBJECTIVES

Natural language processing and machine learning have the potential to lead to biased predictions. We designed a novel Automated RIsk Assessment (ARIA) machine learning algorithm that assesses risk of violence and aggression in adolescents using natural language processing of transcribed student interviews. This work evaluated the possible sources of bias in the study design and the algorithm, tested how much of a prediction was explained by demographic covariates, and investigated the misclassifications based on demographic variables.

METHODS

We recruited students 10-18 years of age and enrolled in middle or high schools in Ohio, Kentucky, Indiana, and Tennessee. The reference standard outcome was determined by a forensic psychiatrist as either a "high" or "low" risk level. ARIA used L2-regularized logistic regression to predict a risk level for each student using contextual and semantic features. We conducted three analyses: a PROBAST analysis of risk in study design; analysis of demographic variables as covariates; and a prediction analysis. Covariates were included in the linear regression analyses and comprised of race, sex, ethnicity, household education, annual household income, age at the time of visit, and utilization of public assistance.

RESULTS

We recruited 412 students from 204 schools. ARIA performed with an AUC of 0.92, sensitivity of 71%, NPV of 77%, and specificity of 95%. Of these, 387 students with complete demographic information were included in the analysis. Individual linear regressions resulted in a coefficient of determination less than 0.08 across all demographic variables. When using all demographic variables to predict ARIA's risk assessment score, the multiple linear regression model resulted in a coefficient of determination of 0.189. ARIA performed with a lower False Negative Rate (FNR) of 15.2% (CI [0 - 40]) for the Black subgroup and 12.7%, CI [0 - 41.4] for Other races, compared to an FNR of 26.1% (CI [14.1 - 41.8]) in the White subgroup.

CONCLUSIONS

Bias assessment is needed to address shortcomings within machine learning. In our work, student race, ethnicity, sex, use of public assistance, and annual household income did not explain ARIA's risk assessment score of students. ARIA will continue to be evaluated regularly with increased subject recruitment.

摘要

目的

自然语言处理和机器学习有可能导致有偏差的预测。我们设计了一种新的自动风险评估(ARIA)机器学习算法,该算法使用转录学生访谈的自然语言处理来评估青少年暴力和攻击的风险。这项工作评估了研究设计和算法中可能存在的偏差来源,测试了多少预测可以用人口统计学协变量来解释,并根据人口统计学变量调查了错误分类。

方法

我们招募了年龄在 10-18 岁之间的学生,并在俄亥俄州、肯塔基州、印第安纳州和田纳西州的中学或高中注册。参考标准结果由法医精神病学家确定为“高”或“低”风险水平。ARIA 使用 L2-正则化逻辑回归,使用上下文和语义特征为每个学生预测风险水平。我们进行了三项分析:研究设计风险的 PROBAST 分析;作为协变量的人口统计学变量分析;以及预测分析。协变量被纳入线性回归分析,包括种族、性别、族裔、家庭受教育程度、家庭年收入、就诊时的年龄和公共援助的使用情况。

结果

我们从 204 所学校招募了 412 名学生。ARIA 的 AUC 为 0.92,敏感性为 71%,NPV 为 77%,特异性为 95%。其中,387 名具有完整人口统计学信息的学生被纳入分析。在所有人口统计学变量中,个体线性回归的决定系数小于 0.08。当使用所有人口统计学变量来预测 ARIA 的风险评估得分时,多元线性回归模型的决定系数为 0.189。与白人亚组的假阴性率(FNR)26.1%(CI [14.1 - 41.8])相比,ARIA 在黑人亚组的 FNR 为 15.2%(CI [0 - 40]),其他种族的 FNR 为 12.7%(CI [0 - 41.4])。

结论

需要进行偏差评估以解决机器学习中的缺陷。在我们的工作中,学生的种族、族裔、性别、使用公共援助和家庭年收入并不能解释 ARIA 对学生风险评估的得分。随着更多的被试招募,ARIA 将继续定期进行评估。

相似文献

1
Investigation of bias in the automated assessment of school violence.学校暴力自动评估中的偏差研究。
J Biomed Inform. 2024 Sep;157:104709. doi: 10.1016/j.jbi.2024.104709. Epub 2024 Aug 15.
10
Rapid, point-of-care antigen tests for diagnosis of SARS-CoV-2 infection.用于 SARS-CoV-2 感染诊断的快速、即时抗原检测。
Cochrane Database Syst Rev. 2022 Jul 22;7(7):CD013705. doi: 10.1002/14651858.CD013705.pub3.

本文引用的文献

2
Artificial intelligence, big data and heart transplantation: Actualities.人工智能、大数据与心脏移植:现状
Int J Med Inform. 2023 Aug;176:105110. doi: 10.1016/j.ijmedinf.2023.105110. Epub 2023 May 25.
6
Addressing Systemic Bias in Violence Risk Assessment.解决暴力风险评估中的系统性偏差。
J Am Acad Psychiatry Law. 2022 Dec;50(4):626-635. doi: 10.29158/JAAPL.220031-21. Epub 2022 Oct 12.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验