Suppr超能文献

使用卷积神经网络对超声成像中的胎儿肾盂积水进行自动胎儿泌尿外科学会(SFU)分级。

Automated Society of Fetal Urology (SFU) grading of hydronephrosis on ultrasound imaging using a convolutional neural network.

作者信息

Ostrowski David A, Logan Joseph R, Antony Maria, Broms Reilly, Weiss Dana A, Van Batavia Jason, Long Christopher J, Smith Ariana L, Zderic Stephen A, Edwins Rebecca C, Pominville Raymond J, Hannick Jessica H, Woo Lynn L, Fan Yong, Tasian Gregory E, Weaver John K

机构信息

Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA; Division of Urology, Department of Surgery, University of Pennsylvania Health System, Philadelphia, PA, USA.

Division of Urology, Department of Surgery, Children's Hospital of Philadelphia, Philadelphia, PA, USA; Translational Research Informatics Group, Children's Hospital of Philadelphia, Philadelphia, PA, USA.

出版信息

J Pediatr Urol. 2023 Oct;19(5):566.e1-566.e8. doi: 10.1016/j.jpurol.2023.05.014. Epub 2023 May 26.

Abstract

INTRODUCTION

Grading of hydronephrosis severity on postnatal renal ultrasound guides management decisions in antenatal hydronephrosis (ANH). Multiple systems exist to help standardize hydronephrosis grading, yet poor inter-observer reliability persists. Machine learning methods may provide tools to improve the efficiency and accuracy of hydronephrosis grading.

OBJECTIVE

To develop an automated convolutional neural network (CNN) model to classify hydronephrosis on renal ultrasound imaging according to the Society of Fetal Urology (SFU) system as potential clinical adjunct.

STUDY DESIGN

A cross-sectional, single-institution cohort of postnatal renal ultrasounds with radiologist SFU grading from pediatric patients with and without hydronephrosis of stable severity was obtained. Imaging labels were used to automatedly select sagittal and transverse grey-scale renal images from all available studies from each patient. A VGG16 pre-trained ImageNet CNN model analyzed these preprocessed images. Three-fold stratified cross-validation was used to build and evaluate the model that was used to classify renal ultrasounds on a per patient basis into five classes based on the SFU system (normal, SFU I, SFU II, SFU III, or SFU IV). These predictions were compared to radiologist grading. Confusion matrices evaluated model performance. Gradient class activation mapping demonstrated imaging features driving model predictions.

RESULTS

We identified 710 patients with 4659 postnatal renal ultrasound series. Per radiologist grading, 183 were normal, 157 were SFU I, 132 were SFU II, 100 were SFU III, and 138 were SFU IV. The machine learning model predicted hydronephrosis grade with 82.0% (95% CI: 75-83%) overall accuracy and classified 97.6% (95% CI: 95-98%) of the patients correctly or within one grade of the radiologist grade. The model classified 92.3% (95% CI: 86-95%) normal, 73.2% (95% CI: 69-76%) SFU I, 73.5% (95% CI: 67-75%) SFU II, 79.0% (95% CI: 73-82%) SFU III, and 88.4% (95% CI: 85-92%) SFU IV patients accurately. Gradient class activation mapping demonstrated that the ultrasound appearance of the renal collecting system drove the model's predictions.

DISCUSSION

The CNN-based model classified hydronephrosis on renal ultrasounds automatically and accurately based on the expected imaging features in the SFU system. Compared to prior studies, the model functioned more automatically with greater accuracy. Limitations include the retrospective, relatively small cohort, and averaging across multiple imaging studies per patient.

CONCLUSIONS

An automated CNN-based system classified hydronephrosis on renal ultrasounds according to the SFU system with promising accuracy based on appropriate imaging features. These findings suggest a possible adjunctive role for machine learning systems in the grading of ANH.

摘要

引言

产后肾脏超声检查中肾盂积水严重程度的分级指导着产前肾盂积水(ANH)的管理决策。存在多种系统来帮助规范肾盂积水分级,但观察者间的可靠性仍然较差。机器学习方法可能提供提高肾盂积水分级效率和准确性的工具。

目的

开发一种自动卷积神经网络(CNN)模型,根据胎儿泌尿外科学会(SFU)系统对肾脏超声成像上的肾盂积水进行分类,作为潜在的临床辅助手段。

研究设计

获得了一个来自单一机构的横断面队列,包含有或无严重程度稳定的肾盂积水的儿科患者的产后肾脏超声检查结果及放射科医生的SFU分级。影像标签用于从每个患者的所有可用研究中自动选择矢状位和横断位灰阶肾脏图像。一个预训练的VGG16 ImageNet CNN模型分析这些预处理后的图像。采用三折分层交叉验证来构建和评估该模型,该模型用于根据SFU系统将每位患者的肾脏超声检查结果分为五类(正常、SFU I级、SFU II级、SFU III级或SFU IV级)。将这些预测结果与放射科医生的分级进行比较。混淆矩阵评估模型性能。梯度类激活映射展示了驱动模型预测的影像特征。

结果

我们识别出710例患者,共4659个产后肾脏超声系列。根据放射科医生的分级,183例为正常,157例为SFU I级,132例为SFU II级,100例为SFU III级,138例为SFU IV级。机器学习模型预测肾盂积水分级的总体准确率为82.0%(95%CI:75 - 83%),并且将97.6%(95%CI:95 - 98%)的患者正确分类或分类在与放射科医生分级相差一个级别的范围内。该模型准确分类了92.3%(95%CI:86 - 95%)的正常患者、73.2%(95%CI:69 - 76%)的SFU I级患者、73.5%(95%CI:67 - 75%)的SFU II级患者、79.0%(95%CI:73 - 82%)的SFU III级患者和88.4%(95%CI:85 - 92%)的SFU IV级患者。梯度类激活映射表明肾脏集合系统的超声表现驱动了模型的预测。

讨论

基于CNN的模型根据SFU系统中预期的影像特征,自动且准确地对肾脏超声上的肾盂积水进行分类。与先前的研究相比,该模型运行更自动化且准确性更高。局限性包括研究为回顾性、队列相对较小以及对每位患者的多个影像研究进行平均。

结论

一个基于CNN的自动系统根据SFU系统,基于适当的影像特征对肾脏超声上的肾盂积水进行分类,准确性良好。这些发现表明机器学习系统在ANH分级中可能具有辅助作用。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验