Suppr超能文献

通过小分子辅助溶解技术,从风力涡轮机叶片废物中回收树脂和纤维。

Recycling of both resin and fibre from wind turbine blade waste via small molecule-assisted dissolution.

机构信息

Department of Air Protection, Faculty of Energy and Environmental Engineering, Silesian University of Technology in Gliwice, 44-100, Gliwice, Poland.

Department of Heating, Ventilation, and Dust Removal Technology, Faculty of Energy and Environmental Engineering, Silesian University of Technology in Gliwice, 44-100, Gliwice, Poland.

出版信息

Sci Rep. 2023 Jun 7;13(1):9270. doi: 10.1038/s41598-023-36183-4.

Abstract

Wind energy has significant growth potential and applicability on a global scale, but approximately 2.4% of wind turbine blades must be decommissioned annually. The majority of blade components can be recycled; however, wind blades are rarely recycled. In the present study, an alternative method was presented involving a small molecule-assisted technique based on a dynamic reaction that dissolves waste composite materials containing ester groups to recycle end-of-life wind turbine blades. This effective process requires temperatures below 200 °C, and the major component, i.e., resin, can be easily dissolved. This method can be applied to recycle composite materials, such as wind turbine blades and carbon fibre composites comprising fibres and resins. Depending on the waste, up to 100% of the resin degradation yield can be achieved. The solution used for the recycling process may be reused multiple times and can be reused to obtain resin-based components and create a closed loop for this type of material.

摘要

风能在全球范围内具有巨大的增长潜力和适用性,但每年约有 2.4%的风力涡轮机能叶片必须退役。大多数叶片组件都可以回收利用;然而,风力叶片却很少被回收。在本研究中,提出了一种替代方法,涉及一种基于动态反应的小分子辅助技术,该技术可溶解含有酯基的废旧复合材料,以回收报废的风力涡轮机叶片。该有效过程需要低于 200°C 的温度,并且主要成分,即树脂,可以很容易地溶解。该方法可应用于回收复合材料,如风力涡轮机叶片和碳纤维复合材料,其中包含纤维和树脂。根据废料的不同,可实现高达 100%的树脂降解收率。回收过程中使用的溶液可以多次重复使用,并可用于获得基于树脂的成分,为这种材料创建一个闭环。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/60d5/10247820/ef59b1f1c8c5/41598_2023_36183_Fig1_HTML.jpg

相似文献

2
Wind turbine blade recycling: An evaluation of the European market potential for recycled composite materials.
J Environ Manage. 2021 Jun 1;287:112269. doi: 10.1016/j.jenvman.2021.112269. Epub 2021 Mar 10.
3
Offshore and onshore wind turbine blade waste material forecast at a regional level in Europe until 2050.
Waste Manag. 2020 Apr 1;106:120-131. doi: 10.1016/j.wasman.2020.03.018. Epub 2020 Mar 20.
4
Wind Turbine Blades Using Recycled Carbon Fibers: An Environmental Assessment.
Environ Sci Technol. 2022 Jan 18;56(2):1267-1277. doi: 10.1021/acs.est.1c05462. Epub 2022 Jan 4.
5
Recovering high-quality glass fibers from end-of-life wind turbine blades through swelling-assisted low-temperature pyrolysis.
Waste Manag. 2024 Oct 1;187:179-187. doi: 10.1016/j.wasman.2024.07.020. Epub 2024 Jul 21.
6
Physical properties data of extruded composites from recycled wind turbine blade material.
Data Brief. 2019 Aug 2;25:104030. doi: 10.1016/j.dib.2019.104030. eCollection 2019 Aug.
8
Environmental impact and waste recycling technologies for modern wind turbines: An overview.
Waste Manag Res. 2023 Apr;41(4):744-759. doi: 10.1177/0734242X221135527. Epub 2022 Nov 16.
9
Sustainable End-of-Life Management of Wind Turbine Blades: Overview of Current and Coming Solutions.
Materials (Basel). 2021 Feb 27;14(5):1124. doi: 10.3390/ma14051124.
10
Exploratory Study on the Application of Graphene Platelet-Reinforced Composite to Wind Turbine Blade.
Polymers (Basel). 2024 Jul 12;16(14):2002. doi: 10.3390/polym16142002.

引用本文的文献

2
Freeze-thaw recycling for fiber-resin separation in retired wind blades.
Commun Eng. 2025 Aug 14;4(1):153. doi: 10.1038/s44172-025-00490-7.
3
Possibility of Using Wind Turbine Waste in Particleboard Manufacturing.
Polymers (Basel). 2024 Apr 26;16(9):1210. doi: 10.3390/polym16091210.
4
Advances in green chemistry and engineering.
Sci Rep. 2024 Mar 7;14(1):3133. doi: 10.1038/s41598-024-53594-z.
5

本文引用的文献

1
Prospective Dynamic and Probabilistic Material Flow Analysis of Graphene-Based Materials in Europe from 2004 to 2030.
Environ Sci Technol. 2022 Oct 4;56(19):13798-13809. doi: 10.1021/acs.est.2c04002. Epub 2022 Sep 23.
2
100th Anniversary of Macromolecular Science Viewpoint: Toward Catalytic Chemical Recycling of Waste (and Future) Plastics.
ACS Macro Lett. 2020 Nov 17;9(11):1494-1506. doi: 10.1021/acsmacrolett.0c00582. Epub 2020 Oct 12.
3
Closed-Loop Recycling of Both Resin and Fiber from High-Performance Thermoset Epoxy/Carbon Fiber Composites.
ACS Macro Lett. 2021 Sep 21;10(9):1113-1118. doi: 10.1021/acsmacrolett.1c00437. Epub 2021 Aug 28.
4
Dissolution of epoxy thermosets mild alcoholysis: the mechanism and kinetics study.
RSC Adv. 2018 Jan 4;8(3):1493-1502. doi: 10.1039/c7ra12787a. eCollection 2018 Jan 2.
5
Wind Turbine Blades Using Recycled Carbon Fibers: An Environmental Assessment.
Environ Sci Technol. 2022 Jan 18;56(2):1267-1277. doi: 10.1021/acs.est.1c05462. Epub 2022 Jan 4.
6
Sustainable End-of-Life Management of Wind Turbine Blades: Overview of Current and Coming Solutions.
Materials (Basel). 2021 Feb 27;14(5):1124. doi: 10.3390/ma14051124.
7
Beyond Mechanical Recycling: Giving New Life to Plastic Waste.
Angew Chem Int Ed Engl. 2020 Sep 1;59(36):15402-15423. doi: 10.1002/anie.201915651. Epub 2020 Jun 25.
8
Materials for Wind Turbine Blades: An Overview.
Materials (Basel). 2017 Nov 9;10(11):1285. doi: 10.3390/ma10111285.
9
Recycling carbon fibre reinforced polymers for structural applications: technology review and market outlook.
Waste Manag. 2011 Feb;31(2):378-92. doi: 10.1016/j.wasman.2010.09.019. Epub 2010 Oct 25.
10
A plate produced by nonmetallic materials of pulverized waste printed circuit boards.
Environ Sci Technol. 2008 Jul 15;42(14):5267-71. doi: 10.1021/es800825u.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验