Suppr超能文献

深度学习在 FAST 质量评估中的应用。

Deep Learning for FAST Quality Assessment.

机构信息

School of Electrical and Computer Engineering, Oklahoma State University, Stillwater, OK, USA.

IBM, IBM Cloud, Armonk, New York, USA.

出版信息

J Ultrasound Med. 2023 Jan;42(1):71-79. doi: 10.1002/jum.16045. Epub 2022 Jun 30.

Abstract

OBJECTIVES

To determine the feasibility of using a deep learning (DL) algorithm to assess the quality of focused assessment with sonography in trauma (FAST) exams.

METHODS

Our dataset consists of 441 FAST exams, classified as good-quality or poor-quality, with 3161 videos. We first used convolutional neural networks (CNNs), pretrained on the Imagenet dataset and fine-tuned on the FAST dataset. Second, we trained a CNN autoencoder to compress FAST images, with a 20-1 compression ratio. The compressed codes were input to a two-layer classifier network. To train the networks, each video was labeled with the quality of the exam, and the frames were labeled with the quality of the video. For inference, a video was classified as poor-quality if half the frames were classified as poor-quality by the network, and an exam was classified as poor-quality if half the videos were classified as poor-quality.

RESULTS

The results with the encoder-classifier networks were much better than the transfer learning results with CNNs. This was primarily because the Imagenet dataset is not a good match for the ultrasound quality assessment problem. The DL models produced video sensitivities and specificities of 99% and 98% on held-out test sets.

CONCLUSIONS

Using an autoencoder to compress FAST images is a very effective way to obtain features that can be used to predict exam quality. These features are more suitable than those obtained from CNNs pretrained on Imagenet.

摘要

目的

确定使用深度学习(DL)算法评估创伤重点超声检查(FAST)检查质量的可行性。

方法

我们的数据集包含 441 次 FAST 检查,分为高质量和低质量,共有 3161 个视频。我们首先使用在 Imagenet 数据集上预训练并在 FAST 数据集上微调的卷积神经网络(CNN)。其次,我们训练了一个 CNN 自动编码器来压缩 FAST 图像,压缩比为 20-1。压缩码被输入到一个两层分类器网络中。为了训练网络,每个视频都用检查的质量进行标记,而每一帧都用视频的质量进行标记。对于推断,如果网络将一半的帧标记为低质量,则将视频分类为低质量,如果将一半的视频分类为低质量,则将检查分类为低质量。

结果

与 CNN 的迁移学习结果相比,编码器分类器网络的结果要好得多。这主要是因为 Imagenet 数据集与超声质量评估问题不太匹配。DL 模型在保留测试集上产生了 99%的视频灵敏度和 98%的特异性。

结论

使用自动编码器压缩 FAST 图像是获取可用于预测检查质量的特征的一种非常有效的方法。这些特征比在 Imagenet 上预训练的 CNN 获得的特征更合适。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验