Department of Urology, Affiliated Longhua People's Hospital, Southern Medical University, Shenzhen, 518109, China.
College of Basic Medicine, Southern Medical University, Guangzhou, 510515, China.
BMC Genomics. 2023 Jun 7;24(1):307. doi: 10.1186/s12864-023-09416-z.
Clear cell renal cell carcinoma (ccRCC) is a malignant tumor with heterogeneous morphology and poor prognosis. This study aimed to establish a DNA methylation (DNAm)-driven gene-based prognostic model for ccRCC.
Reduced representation bisulfite sequencing (RRBS) was performed on the DNA extracts from ccRCC patients. We analyzed the RRBS data from 10 pairs of patient samples to screen the candidate CpG sites, then trained and validated an 18-CpG site model, and integrated the clinical characters to establish a Nomogram model for the prognosis or risk evaluation of ccRCC.
We identified 2261 DMRs in the promoter region. After DMR selection, 578 candidates were screened, and was correspondence with 408 CpG dinucleotides in the 450 K array. We collected the DNAm profiles of 478 ccRCC samples from TCGA dataset. Using the training set with 319 samples, a prognostic panel of 18 CpGs was determined by univariate Cox regression, LASSO regression, and multivariate Cox proportional hazards regression analyses. We constructed a prognostic model by combining the clinical signatures. In the test set (159 samples) and whole set (478 samples), the Kaplan-Meier plot showed significant differences; and the ROC curve and survival analyses showed AUC greater than 0.7. The Nomogram integrated with clinicopathological characters and methylation risk score had better performance, and the decision curve analyses also showed a beneficial effect.
This work provides insight into the role of hypermethylation in ccRCC. The targets identified might serve as biomarkers for early ccRCC diagnosis and prognosis biomarkers for ccRCC. We believe our findings have implications for better risk stratification and personalized management of this disease.
透明细胞肾细胞癌(ccRCC)是一种形态异质性差、预后不良的恶性肿瘤。本研究旨在建立 ccRCC 的基于 DNA 甲基化(DNAm)的基因预后模型。
对 ccRCC 患者的 DNA 提取物进行重亚硫酸盐测序(RRBS)。我们对 10 对患者样本的 RRBS 数据进行了分析,以筛选候选 CpG 位点,然后对 18 个 CpG 位点模型进行了训练和验证,并整合了临床特征,建立了用于 ccRCC 预后或风险评估的列线图模型。
在启动子区域我们鉴定了 2261 个 DMR。经过 DMR 选择,筛选出 578 个候选者,与 450K 阵列中的 408 个 CpG 二核苷酸相对应。我们从 TCGA 数据集收集了 478 个 ccRCC 样本的 DNAm 图谱。使用 319 个样本的训练集,通过单因素 Cox 回归、LASSO 回归和多因素 Cox 比例风险回归分析,确定了一个由 18 个 CpG 组成的预后面板。我们通过结合临床特征构建了一个预后模型。在测试集(159 个样本)和整个数据集(478 个样本)中,Kaplan-Meier 图显示了显著差异;ROC 曲线和生存分析显示 AUC 大于 0.7。整合临床病理特征和甲基化风险评分的列线图具有更好的性能,决策曲线分析也显示了有益的效果。
这项工作深入了解了超甲基化在 ccRCC 中的作用。鉴定的靶标可能作为 ccRCC 早期诊断和预后的生物标志物。我们相信我们的发现对更好地分层风险和个性化管理这种疾病具有重要意义。