Lemcoff Tali, Alus Lotem, Haataja Johannes S, Wagner Avital, Zhang Gan, Pavan Mariela J, Yallapragada Venkata Jayasurya, Vignolini Silvia, Oron Dan, Schertel Lukas, Palmer Benjamin A
Department of Chemistry, Ben-Gurion University of the Negev, Beer-Sheva, Israel.
Department of Molecular Chemistry and Materials Science, Weizmann Institute of Science, Rehovot, Israel.
Nat Photonics. 2023;17(6):485-493. doi: 10.1038/s41566-023-01182-4. Epub 2023 Apr 24.
A fundamental question regarding light scattering is how whiteness, generated from multiple scattering, can be obtained from thin layers of materials. This challenge arises from the phenomenon of optical crowding, whereby, for scatterers packed with filling fractions higher than ~30%, reflectance is drastically reduced due to near-field coupling between the scatterers. Here we show that the extreme birefringence of isoxanthopterin nanospheres overcomes optical crowding effects, enabling multiple scattering and brilliant whiteness from ultra-thin chromatophore cells in shrimp. Strikingly, numerical simulations reveal that birefringence, originating from the spherulitic arrangement of isoxanthopterin molecules, enables intense broadband scattering almost up to the maximal packing for random spheres. This reduces the thickness of material required to produce brilliant whiteness, resulting in a photonic system that is more efficient than other biogenic or biomimetic white materials which operate in the lower refractive index medium of air. These results highlight the importance of birefringence as a structural variable to enhance the performance of such materials and could contribute to the design of biologically inspired replacements for artificial scatterers like titanium dioxide.
一个关于光散射的基本问题是,如何从薄层材料中获得由多次散射产生的白色。这一挑战源于光学拥挤现象,即对于填充率高于约30%的散射体,由于散射体之间的近场耦合,反射率会急剧降低。在此,我们表明异黄蝶呤纳米球的极端双折射克服了光学拥挤效应,使得虾中超薄色素细胞能够实现多次散射并呈现出明亮的白色。引人注目的是,数值模拟表明,源自异黄蝶呤分子球晶排列的双折射能够实现几乎达到随机球体最大堆积密度的强烈宽带散射。这减少了产生明亮白色所需的材料厚度,从而形成了一个比其他在较低折射率的空气介质中运行的生物源或仿生白色材料更高效的光子系统。这些结果突出了双折射作为一种结构变量对于提升此类材料性能的重要性,并可能有助于设计受生物启发的、替代二氧化钛等人工散射体的材料。