Gencer Gozde, Mancuso Christopher, Chua Koon Jiew, Ling Hua, Costello Cait M, Chang Matthew Wook, March John C
Biological and Environmental Engineering Department, Cornell University, Ithaca, NY, United States.
Biomedical Engineering Department, Boston University, Boston, MA, United States.
Front Bioeng Biotechnol. 2023 May 23;11:1191162. doi: 10.3389/fbioe.2023.1191162. eCollection 2023.
Uric acid disequilibrium is implicated in chronic hyperuricemia-related diseases. Long-term monitoring and lowering of serum uric acid levels may be crucial for diagnosis and effective management of these conditions. However, current strategies are not sufficient for accurate diagnosis and successful long-term management of hyperuricemia. Moreover, drug-based therapeutics can cause side effects in patients. The intestinal tract plays an important role in maintaining healthy serum acid levels. Hence, we investigated the engineered human commensal as a novel method for diagnosis and long-term management of hyperuricemia. To monitor changes in uric acid concentration in the intestinal lumen, we developed a bioreporter using the uric acid responsive synthetic promoter, , and uric acid binding PucR protein. Results demonstrated that the bioreporter module in commensal can detect changes in uric acid concentration in a dose-dependent manner. To eliminate the excess uric acid, we designed a uric acid degradation module, which overexpresses an uric acid transporter and a urate oxidase. Strains engineered with this module degraded all the uric acid (250 µM) found in the environment within 24 h, which is significantly lower ( < 0.001) compared to wild type . Finally, we designed an model using human intestinal cell line, Caco-2, which provided a versatile tool to study the uric acid transport and degradation in an environment mimicking the human intestinal tract. Results showed that engineered commensal reduced ( < 0.01) the apical uric acid concentration by 40.35% compared to wild type . This study shows that reprogramming holds promise as a valid alternative synthetic biology therapy to monitor and maintain healthy serum uric acid levels.
尿酸失衡与慢性高尿酸血症相关疾病有关。长期监测和降低血清尿酸水平对于这些疾病的诊断和有效管理可能至关重要。然而,目前的策略不足以准确诊断和成功长期管理高尿酸血症。此外,基于药物的治疗方法可能会给患者带来副作用。肠道在维持健康的血清酸水平方面起着重要作用。因此,我们研究了工程化的人类共生菌,将其作为一种诊断和长期管理高尿酸血症的新方法。为了监测肠腔内尿酸浓度的变化,我们使用尿酸响应性合成启动子和尿酸结合蛋白PucR开发了一种生物报告基因。结果表明,共生菌中的生物报告基因模块可以以剂量依赖的方式检测尿酸浓度的变化。为了消除过量的尿酸,我们设计了一个尿酸降解模块,该模块过表达一种尿酸转运蛋白和一种尿酸氧化酶。用该模块工程改造的菌株在24小时内降解了环境中发现的所有尿酸(250μM),与野生型相比显著降低(<0.001)。最后,我们使用人肠道细胞系Caco-2设计了一个模型,该模型提供了一个通用工具,用于研究在模拟人类肠道的环境中尿酸的转运和降解。结果表明,与野生型相比,工程化共生菌使顶端尿酸浓度降低了40.35%(<0.01)。这项研究表明,对共生菌进行重新编程有望成为一种有效的替代合成生物学疗法,用于监测和维持健康的血清尿酸水平。