Suppr超能文献

植物细胞对 T3SS 和 T6SS 的不同反应揭示了一种控制植物相关病原体的有效策略。

Differential plant cell responses to T3SS and T6SS reveal an effective strategy for controlling plant-associated pathogens.

机构信息

State Key Laboratory of Microbial Metabolism, Joint International Research Laboratory of Metabolic and Developmental Sciences, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University , Shanghai, China.

Department of Immunology and Microbiology, School of Life Sciences, Southern University of Science and Technology , Shenzhen, Guangdong, China.

出版信息

mBio. 2023 Aug 31;14(4):e0045923. doi: 10.1128/mbio.00459-23. Epub 2023 Jun 8.

Abstract

is a gram-negative plant pathogen that employs the type Ⅲ secretion system (T3SS) to infect cucurbit crops and cause bacterial fruit blotch. This bacterium also possesses an active type Ⅵ secretion system (T6SS) with strong antibacterial and antifungal activities. However, how plant cells respond to these two secretion systems and whether there is any cross talk between T3SS and T6SS during infection remain unknown. Here, we employ transcriptomic analysis to compare cellular responses to the T3SS and the T6SS during infection and report distinctive effects on multiple pathways. The T3SS-mediated differentially expressed genes were enriched in the pathways of phenylpropanoid biosynthesis, plant-pathogen interaction, MAPK signaling pathway, and glutathione metabolism, while the T6SS uniquely affected genes were related to photosynthesis. The T6SS does not contribute to the virulence of but is critical for the survival of the bacterium when mixed with watermelon phyllosphere bacteria. In addition, T3SS-mediated virulence is independent of the T6SS, and the inactivation of the T3SS does not affect the T6SS-mediated competition against a diverse set of bacterial pathogens that commonly contaminate edible plants or directly infect plants. A T6SS-active T3SS-null mutant (Ac) could inhibit the growth of pv. significantly both and and also reduce symptoms of rice bacterial blight. In conclusion, our data demonstrate the T6SS in is nonpathogenic to the plant host and can be harnessed as a pathogen killer against plant-associated bacteria. IMPORTANCE Chemical pesticides are widely used to protect crops from various pathogens. Still, their extensive use has led to severe consequences, including drug resistance and environmental contamination. Here, we show that an engineered T6SS-active, but avirulent mutant of has strong inhibition capabilities against several pathogenic bacteria, demonstrating an effective strategy that is an alternative to chemical pesticides for sustainable agricultural practices.

摘要

是一种革兰氏阴性植物病原体,它利用 III 型分泌系统(T3SS)感染葫芦科作物并导致细菌性果斑病。该细菌还具有活性 VI 型分泌系统(T6SS),具有强大的抗菌和抗真菌活性。然而,植物细胞如何对这两种分泌系统做出反应,以及在感染过程中 T3SS 和 T6SS 是否存在任何串扰,目前尚不清楚。在这里,我们采用转录组分析比较了感染过程中细胞对 T3SS 和 T6SS 的反应,并报告了对多个途径的独特影响。T3SS 介导的差异表达基因富集在苯丙烷生物合成、植物-病原体相互作用、MAPK 信号通路和谷胱甘肽代谢途径中,而 T6SS 独特影响的基因与光合作用有关。T6SS 不会影响 的毒力,但当与西瓜叶际细菌混合时,对细菌的存活至关重要。此外,T3SS 介导的毒力独立于 T6SS,并且 T3SS 的失活不影响 T6SS 介导的与常见污染食用植物或直接感染植物的多种细菌病原体的竞争。一个 T6SS 活性 T3SS 缺失突变体(Ac)可以在 和 中显著抑制 pv. 的生长,并显著减轻水稻细菌性条斑病的症状。总之,我们的数据表明 中的 T6SS 对植物宿主没有致病性,可以作为一种针对植物相关细菌的病原体杀手加以利用。

重要性 化学农药被广泛用于保护作物免受各种病原体的侵害。然而,它们的广泛使用导致了严重的后果,包括耐药性和环境污染。在这里,我们表明,一种经过工程改造的 T6SS 活性但无毒突变体对几种致病性细菌具有很强的抑制能力,这为可持续农业实践提供了一种替代化学农药的有效策略。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/9a9c/10470598/eb5546c73dc8/mbio.00459-23.f001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验