Beijing Key Laboratory for Optical Materials and Photonic Devices, Department of Chemistry, Capital Normal University, Beijing 100048, P. R. China.
Institute of Molecular Plus (IMP), Tianjin University, Tianjin 300072, P. R. China.
J Am Chem Soc. 2023 Jun 21;145(24):13392-13399. doi: 10.1021/jacs.3c03681. Epub 2023 Jun 8.
The design and construction of organic afterglow materials is an attractive but formidably challenging task due to the low intersystem crossing efficiency and nonradiative decay. Here, we developed a host surface-induced strategy to achieve excitation wavelength-dependent (Ex-De) afterglow emission through a facile dropping process. The prepared PCz@dimethyl terephthalate (DTT)@paper system exhibits a room-temperature phosphorescence afterglow, with the lifetime up to 1077.1 ± 15 ms and duration time exceeding 6 s under ambient conditions. Furthermore, we can switch the afterglow emission on and off by adjusting the excitation wavelength below or above 300 nm, showing a remarkable Ex-De behavior. Spectral analysis demonstrated that the afterglow originates from the phosphorescence of PCz@DTT assemblies. The stepwise preparation process and detailed experiments (XRD, H NMR, and FT-IR analysis) proved the presence of strong intermolecular interactions between the carbonyl groups on the surface of DTT and the entire frame of PCz, which can inhibit the nonradiative processes of PCz to achieve afterglow emission. Theoretical calculations further manifested that DTT geometry alteration under different excitation beams is the main reason for the Ex-De afterglow. This work discloses an effective strategy for constructing smart Ex-De afterglow systems that can be fully exploited in a range of fields.
有机余辉材料的设计和构建是一项极具吸引力但极具挑战性的任务,因为其系间窜越效率低且无辐射衰减。在这里,我们通过简单的滴涂过程开发了一种主体表面诱导策略,以实现激发波长依赖性(Ex-De)余辉发射。所制备的 PCz@对苯二甲酸二甲酯(DTT)@纸体系在环境条件下表现出室温磷光余辉,寿命长达 1077.1±15ms,持续时间超过 6s。此外,我们可以通过将激发波长调整到 300nm 以下或以上来开启和关闭余辉发射,表现出显著的 Ex-De 行为。光谱分析表明,余辉源自 PCz@DTT 组装体的磷光。逐步的制备过程和详细的实验(XRD、H NMR 和 FT-IR 分析)证明了 DTT 表面上的羰基与 PCz 的整个骨架之间存在强烈的分子间相互作用,这可以抑制 PCz 的非辐射过程以实现余辉发射。理论计算进一步表明,不同激发束下 DTT 几何形状的改变是 Ex-De 余辉的主要原因。这项工作揭示了构建智能 Ex-De 余辉系统的有效策略,可充分应用于多个领域。