Suppr超能文献

通过从室温磷光基质到局域偶极子的能量中继实现的超长余辉。

Ultralong afterglow enabled by energy relay from room-temperature phosphorescent matrixes to local dipoles.

作者信息

Zhang Chunying, Lu Guang, Wang Zicheng, Zhao Ying, Man Yi, Zhang Jing, Duan Chunbo, Han Chunmiao, Xu Hui

机构信息

School of Chemistry and Materials Science & Key Laboratory of Functional Inorganic Material Chemistry (Ministry of Education), Heilongjiang University, Harbin, P. R. China.

出版信息

Nat Commun. 2025 Jul 1;16(1):5935. doi: 10.1038/s41467-025-60863-6.

Abstract

Long-persistent afterglows based on organic donor-acceptor systems feature ultra-long duration reaching hours, leading to the advantages in long-time-range display and bio/medical applications. However, the understanding of this optical phenomenon is insufficient. Herein, dibenzothiophene-phosphine oxide hybrids named nDBTxPO with different room temperature phosphorescence characteristics are used as acceptor matrixes. It shows that after doping N,N,N',N'-tetramethylbenzidine (TMB) as donor, afterglow intensities and durations of nDBTxPO:1% TMB are strongly correlated to the stabilized triplet state (T*) properties of nDBTxPO. Compared to other congeners, high-population and high-lying T state of 28DBTDPO matrix supports the positive and efficient energy transfer to CT states of 28DBTDPO-TMB local dipoles in the doped film. This energy relay between two long-persistent T and CT states is the key determinant resulting in the longest afterglow of 28DBTDPO:1% TMB. This work provides clear insight into energy transfer for lightly-doping donor-acceptor systems, therefore will promote the accurate system design for practical applications.

摘要

基于有机供体-受体体系的长余辉具有长达数小时的超长时间持续,这在长时间范围显示以及生物/医学应用方面具有优势。然而,对这种光学现象的理解还不够充分。在此,具有不同室温磷光特性的二苯并噻吩-氧化膦杂化物(命名为nDBTxPO)被用作受体基质。结果表明,在掺杂N,N,N',N'-四甲基联苯胺(TMB)作为供体后,nDBTxPO:1% TMB的余辉强度和持续时间与nDBTxPO的稳定三重态(T*)性质密切相关。与其他同系物相比,28DBTDPO基质的高布居和高能三重态支持向掺杂薄膜中28DBTDPO-TMB局部偶极子的电荷转移(CT)态进行正向且高效的能量转移。这两个长寿命三重态和电荷转移态之间的这种能量传递是导致28DBTDPO:1% TMB产生最长余辉的关键决定因素。这项工作为轻掺杂供体-受体体系的能量转移提供了清晰的见解,因此将推动实际应用中精确的体系设计。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/327d/12214820/6c2e772980bf/41467_2025_60863_Fig1_HTML.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验