Cluster for Advanced Macromolecular Design, School of Chemical Engineering, University of New South Wales, Sydney, NSW, 2052, Australia.
Australian Centre for Nanomedicine, School of Chemical Engineering, University of New South Wales, Sydney, NSW, 2052, Australia.
Macromol Rapid Commun. 2023 Dec;44(24):e2300236. doi: 10.1002/marc.202300236. Epub 2023 Jun 19.
In this study, the fabrication of 3D-printed polymer materials with controlled phase separation using polymerization induced microphase separation (PIMS) via photoinduced 3D printing is demonstrated. While many parameters affecting the nanostructuration in PIMS processes are extensively investigated, the influence of the chain transfer agent (CTA) end group, i.e., Z-group, of macromolecular chain transfer agent (macroCTA) remains unclear as previous research has exclusively employed trithiocarbonate as the CTA end group. Herein, the effect of macroCTAs containing four different Z-groups on the formation of nanostructure of 3D printed materials is explored. The results show that the different Z-groups lead to distinct network formation and phase separation behaviors between the resins, influencing both the 3D printing process and the resulting material properties. Specifically, less reactive macroCTAs toward acrylic radical addition, such as O-alkyl xanthate and N-alkyl-N-aryl dithiocarbamate, result in translucent and brittle materials with macrophase separation morphology. In contrast, more reactive macroCTAs such as S-alkyl trithiocarbonate and 4-chloro-3,5-dimethylpyrazo dithiocarbamate produce transparent and rigid materials with nano-scale morphology. Findings of this study provide a novel approach to manipulate the nanostructure and properties of 3D printed PIMS materials, which can have important implications for materials science and engineering.
在这项研究中,通过光引发 3D 打印展示了使用聚合诱导微相分离(PIMS)制造具有受控相分离的 3D 打印聚合物材料的方法。虽然许多影响 PIMS 过程中纳米结构化的参数已经得到广泛研究,但大分子链转移剂(macroCTA)的链转移剂(CTA)端基 Z 基团的影响仍不清楚,因为之前的研究仅采用三硫代碳酸酯作为 CTA 端基。在此,研究了含有四种不同 Z 基团的 macroCTA 对 3D 打印材料纳米结构形成的影响。结果表明,不同的 Z 基团导致树脂之间的网络形成和相分离行为明显不同,这影响 3D 打印过程和最终材料性能。具体来说,对丙烯基自由基加成反应的活性较低的 macroCTA,如 O-烷基黄原酸酯和 N-烷基-N-芳基二硫代氨基甲酸盐,导致具有大相分离形态的半透明和脆性材料。相比之下,活性较高的 macroCTA,如 S-烷基三硫代碳酸酯和 4-氯-3,5-二甲基吡唑二硫代氨基甲酸盐,产生具有纳米级形态的透明和刚性材料。本研究的结果为操纵 3D 打印 PIMS 材料的纳米结构和性能提供了一种新方法,这对于材料科学和工程具有重要意义。