Shi Xiaobing, Bobrin Valentin A, Yao Yin, Zhang Jin, Corrigan Nathaniel, Boyer Cyrille
Cluster for Advanced Macromolecular Design and Australian Centre for Nanomedicine, School of Chemical Engineering, University of New South Wales, Sydney, NSW 2052, Australia.
Electron Microscope Unit, Mark Wainwright Analytical Centre, University of New South Wales, Sydney, NSW 2052, Australia.
Angew Chem Int Ed Engl. 2022 Aug 26;61(35):e202206272. doi: 10.1002/anie.202206272. Epub 2022 Jul 18.
Nanostructured polymeric materials play important roles in many advanced applications, however, controlling the morphologies of polymeric thermosets remains a challenge. This work uses multi-arm macroCTAs to mediate polymerization-induced microphase separation (PIMS) and prepare nanostructured materials via photoinduced 3D printing. The characteristic length scale of microphase-separated domains is determined by the macroCTA arm length, while nanoscale morphologies are controlled by the macroCTA architecture. Specifically, using 2- and 4- arm macroCTAs provides materials with different morphologies compared to analogous monofunctional linear macroCTAs at similar compositions. The mechanical properties of these nanostructured thermosets can also be tuned while maintaining the desired morphologies. Using multi-arm macroCTAs can thus broaden the scope of accessible nanostructures for extended applications, including the fabrication of actuators and potential drug delivery devices.
纳米结构聚合物材料在许多先进应用中发挥着重要作用,然而,控制聚合物热固性材料的形态仍然是一项挑战。这项工作使用多臂大分子引发转移终止剂(macroCTA)来介导聚合诱导的微相分离(PIMS),并通过光诱导3D打印制备纳米结构材料。微相分离域的特征长度尺度由macroCTA臂长决定,而纳米级形态则由macroCTA结构控制。具体而言,与类似组成的单官能线性macroCTA相比,使用两臂和四臂macroCTA可提供具有不同形态的材料。这些纳米结构热固性材料的机械性能也可以在保持所需形态的同时进行调整。因此,使用多臂macroCTA可以拓宽可用于扩展应用的纳米结构范围,包括制造致动器和潜在的药物递送装置。