Suppr超能文献

瑞利-恩索克理论对 Mie 流体的修正:扩散系数、热扩散系数、黏度和热导率的预测。

Revised Enskog theory for Mie fluids: Prediction of diffusion coefficients, thermal diffusion coefficients, viscosities, and thermal conductivities.

机构信息

Porelab, Department of Chemistry, Norwegian University of Science and Technology, NO-7491 Trondheim, Norway.

出版信息

J Chem Phys. 2023 Jun 14;158(22). doi: 10.1063/5.0149865.

Abstract

Since the 1920s, the Enskog solutions to the Boltzmann equation have provided a route to predicting the transport properties of dilute gas mixtures. At higher densities, predictions have been limited to gases of hard spheres. In this work, we present a revised Enskog theory for multicomponent mixtures of Mie fluids, where the Barker-Henderson perturbation theory is used to calculate the radial distribution function at contact. With parameters of the Mie-potentials regressed to equilibrium properties, the theory is fully predictive for transport properties. The presented framework offers a link between the Mie potential and transport properties at elevated densities, giving accurate predictions for real fluids. For mixtures of noble gases, diffusion coefficients from experiments are reproduced within ±4%. For hydrogen, the predicted self-diffusion coefficient is within 10% of experimental data up to 200 MPa and at temperatures above 171 K. Binary diffusion coefficients of the CO2/CH4 mixture from simulations are reproduced within 20% at pressures up to 14.7 MPa. Except for xenon in the vicinity of the critical point, the thermal conductivity of noble gases and their mixtures is reproduced within 10% of the experimental data. For other molecules than noble gases, the temperature dependence of the thermal conductivity is under-predicted, while the density dependence appears to be correctly predicted. Predictions of the viscosity are within ±10% of the experimental data for methane, nitrogen, and argon up to 300 bar, for temperatures ranging from 233 to 523 K. At pressures up to 500 bar and temperatures from 200 to 800 K, the predictions are within ±15% of the most accurate correlation for the viscosity of air. Comparing the theory to an extensive set of measurements of thermal diffusion ratios, we find that 49% of the model predictions are within ±20% of the reported measurements. The predicted thermal diffusion factor differs by less than 15% from the simulation results of Lennard-Jones mixtures, even at densities well exceeding the critical density.

摘要

自 20 世纪 20 年代以来,玻尔兹曼方程的恩斯克格解为预测稀气体混合物的输运性质提供了一条途径。在更高的密度下,预测仅限于硬球气体。在这项工作中,我们提出了一种用于 Mie 流体多组分混合物的修正恩斯克格理论,其中使用 Barker-Henderson 微扰理论来计算接触处的径向分布函数。通过将 Mie 势的参数回归到平衡性质,该理论可以完全预测输运性质。所提出的框架在升高的密度下提供了 Mie 势和输运性质之间的联系,为真实流体提供了准确的预测。对于惰性气体混合物,实验中的扩散系数在±4%的范围内得到重现。对于氢,在 200 MPa 以下和 171 K 以上的温度下,预测的自扩散系数与实验数据相差在 10%以内。在高达 14.7 MPa 的压力下,通过模拟重现 CO2/CH4 混合物的二元扩散系数在 20%以内。除了临界点附近的氙气外,惰性气体及其混合物的导热系数在实验数据的 10%以内得到重现。对于除惰性气体以外的分子,导热系数的温度依赖性被低估,而密度依赖性似乎被正确预测。在 300 bar 以下、233 至 523 K 的温度范围内,甲烷、氮气和氩气的实验数据的粘度预测值在±10%以内。在 500 bar 以下和 200 至 800 K 的温度范围内,预测值在与空气粘度最准确的关联值的±15%以内。将该理论与广泛的热扩散比测量值进行比较,我们发现 49%的模型预测值在报告的测量值的±20%以内。预测的热扩散因子与 Lennard-Jones 混合物的模拟结果相差不到 15%,即使在远远超过临界密度的密度下也是如此。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验