Suppr超能文献

米氏流体输运性质的模拟与数据驱动建模

Simulation and Data-Driven Modeling of the Transport Properties of the Mie Fluid.

作者信息

Chaparro Gustavo, Müller Erich A

机构信息

Department of Chemical Engineering, Sargent Centre for Process Systems Engineering, Imperial College London, South Kensington Campus, London SW7 2AZ, U.K.

出版信息

J Phys Chem B. 2024 Jan 18;128(2):551-566. doi: 10.1021/acs.jpcb.3c06813. Epub 2024 Jan 5.

Abstract

This work reports the computation and modeling of the self-diffusivity (), shear viscosity (η), and thermal conductivity (κ*) of the Mie fluid. The transport properties were computed using equilibrium molecular dynamics simulations for the Mie fluid with repulsive exponents (λ) ranging from 7 to 34 and at a fixed attractive exponent (λ) of 6 over the whole fluid density (ρ*) range and over a wide temperature () range. The computed database consists of 17,212, 14,288, and 13,099 data points for self-diffusivity, shear viscosity, and thermal conductivity, respectively. The database is successfully validated against published simulation data. The above-mentioned transport properties are correlated using artificial neural networks (ANNs). Two modeling approaches were tested: a semiempirical formulation based on entropy scaling and an empirical formulation based on density and temperature as input variables. For the former, it was found that a unique formulation based on entropy scaling does not yield satisfactory results over the entire density range due to a divergent and incorrect scaling of the transport properties at low densities. For the latter empirical modeling approach, it was found that regularizing the data, e.g., modeling ρ* instead of , ln η instead of η*, and ln κ* instead of κ*, as well as using the inverse of the temperature as an input feature, helps to ease the interpolation efforts of the artificial neural networks. The trained ANNs can model seen and unseen data over a wide range of density and temperature. Ultimately, the ANNs can be used alongside equations of state to regress effective force field parameters from volumetric and transport data.

摘要

这项工作报告了米氏流体的自扩散系数()、剪切粘度(η)和热导率(κ*)的计算与建模。通过平衡分子动力学模拟计算了米氏流体的输运性质,其中排斥指数(λ)范围为7至34,在整个流体密度(ρ*)范围和较宽温度()范围内,吸引指数(λ)固定为6。计算得到的数据库分别包含17212、14288和13099个自扩散系数、剪切粘度和热导率的数据点。该数据库已成功对照已发表的模拟数据进行了验证。上述输运性质使用人工神经网络(ANN)进行关联。测试了两种建模方法:一种基于熵标度的半经验公式和一种以密度和温度作为输入变量的经验公式。对于前者,发现基于熵标度的独特公式在整个密度范围内无法产生令人满意的结果,因为在低密度下输运性质的标度发散且不正确。对于后一种经验建模方法,发现对数据进行正则化,例如对ρ**而非、对ln η而非η、对ln κ而非κ进行建模,以及将温度的倒数作为输入特征,有助于减轻人工神经网络的插值工作。经过训练的人工神经网络可以对广泛的密度和温度范围内的可见和不可见数据进行建模。最终,人工神经网络可与状态方程一起用于从体积和输运数据中回归有效力场参数。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/fe6c/10801693/a2a16c81cb1e/jp3c06813_0001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验