文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

人工智能在头颈部肿瘤中的应用:系统评价的系统评价。

Artificial Intelligence in Head and Neck Cancer: A Systematic Review of Systematic Reviews.

机构信息

Department of Otorhinolaryngology-Head and Neck Surgery, Helsinki University Hospital, University of Helsinki, P.O. Box 263, 00029, HUS, Helsinki, Finland.

Research Program in Systems Oncology, Faculty of Medicine, University of Helsinki, Helsinki, Finland.

出版信息

Adv Ther. 2023 Aug;40(8):3360-3380. doi: 10.1007/s12325-023-02527-9. Epub 2023 Jun 8.


DOI:10.1007/s12325-023-02527-9
PMID:37291378
原文链接:https://pmc.ncbi.nlm.nih.gov/articles/PMC10329964/
Abstract

INTRODUCTION: Several studies have emphasized the potential of artificial intelligence (AI) and its subfields, such as machine learning (ML), as emerging and feasible approaches to optimize patient care in oncology. As a result, clinicians and decision-makers are faced with a plethora of reviews regarding the state of the art of applications of AI for head and neck cancer (HNC) management. This article provides an analysis of systematic reviews on the current status, and of the limitations of the application of AI/ML as adjunctive decision-making tools in HNC management. METHODS: Electronic databases (PubMed, Medline via Ovid, Scopus, and Web of Science) were searched from inception until November 30, 2022. The study selection, searching and screening processes, inclusion, and exclusion criteria followed the Preferred Reporting Items for Systematic Review and Meta-Analysis (PRISMA) guidelines. A risk of bias assessment was conducted using a tailored and modified version of the Assessment of Systematic Review (AMSTAR-2) tool and quality assessment using the Risk of Bias in Systematic Reviews (ROBIS) guidelines. RESULTS: Of the 137 search hits retrieved, 17 fulfilled the inclusion criteria. This analysis of systematic reviews revealed that the application of AI/ML as a decision aid in HNC management can be thematized as follows: (1) detection of precancerous and cancerous lesions within histopathologic slides; (2) prediction of the histopathologic nature of a given lesion from various sources of medical imaging; (3) prognostication; (4) extraction of pathological findings from imaging; and (5) different applications in radiation oncology. In addition, the challenges in implementation of AI/ML models for clinical evaluations include the lack of standardized methodological guidelines for the collection of clinical images, development of these models, reporting of their performance, external validation procedures, and regulatory frameworks. CONCLUSION: At present, there is a paucity of evidence to suggest the adoption of these models in clinical practice due to the aforementioned limitations. Therefore, this manuscript highlights the need for development of standardized guidelines to facilitate the adoption and implementation of these models in the daily clinical practice. In addition, adequately powered, prospective, randomized controlled trials are urgently needed to further assess the potential of AI/ML models in real-world clinical settings for the management of HNC.

摘要

简介:多项研究强调了人工智能(AI)及其子领域(如机器学习(ML))的潜力,认为它们是优化肿瘤患者治疗的新兴可行方法。因此,临床医生和决策者面临着大量关于 AI 在头颈部癌症(HNC)管理中应用的最新研究综述。本文对当前 AI/ML 作为 HNC 管理辅助决策工具的应用现状及局限性进行了系统综述分析。

方法:从建库到 2022 年 11 月 30 日,我们在电子数据库(PubMed、Ovid 上的 Medline、Scopus 和 Web of Science)中进行了检索。研究选择、搜索和筛选过程、纳入和排除标准均遵循系统评价和荟萃分析的首选报告项目(PRISMA)指南。使用定制和修改版的评估系统评价(AMSTAR-2)工具进行偏倚风险评估,并使用系统评价偏倚风险(ROBIS)指南进行质量评估。

结果:在检索到的 137 个检索结果中,有 17 个符合纳入标准。对这些系统综述的分析表明,将 AI/ML 作为 HNC 管理的决策辅助工具的应用可归纳为以下几类:(1)在组织病理学切片中检测癌前和癌性病变;(2)根据各种来源的医学影像学预测给定病变的组织病理学性质;(3)预测预后;(4)从影像学中提取病理发现;(5)在放射肿瘤学中的不同应用。此外,在临床评估中实施 AI/ML 模型面临的挑战包括缺乏用于收集临床图像、开发这些模型、报告其性能、外部验证程序和监管框架的标准化方法学指南。

结论:由于上述局限性,目前几乎没有证据表明这些模型可在临床实践中得到应用。因此,本文强调需要制定标准化指南,以促进这些模型在日常临床实践中的采用和实施。此外,迫切需要进行更有力的、前瞻性的、随机对照试验,以进一步评估 AI/ML 模型在真实世界的 HNC 临床环境中管理的潜力。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/54ba/10329964/e126b5c9a147/12325_2023_2527_Fig2_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/54ba/10329964/4a73a34d0c8c/12325_2023_2527_Fig1_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/54ba/10329964/e126b5c9a147/12325_2023_2527_Fig2_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/54ba/10329964/4a73a34d0c8c/12325_2023_2527_Fig1_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/54ba/10329964/e126b5c9a147/12325_2023_2527_Fig2_HTML.jpg

相似文献

[1]
Artificial Intelligence in Head and Neck Cancer: A Systematic Review of Systematic Reviews.

Adv Ther. 2023-8

[2]
Artificial Intelligence-Driven Radiomics in Head and Neck Cancer: Current Status and Future Prospects.

Int J Med Inform. 2024-8

[3]
Folic acid supplementation and malaria susceptibility and severity among people taking antifolate antimalarial drugs in endemic areas.

Cochrane Database Syst Rev. 2022-2-1

[4]
Use of artificial intelligence in diagnosis of head and neck precancerous and cancerous lesions: A systematic review.

Oral Oncol. 2020-11

[5]
Machine learning in oral squamous cell carcinoma: Current status, clinical concerns and prospects for future-A systematic review.

Artif Intell Med. 2021-5

[6]
Beyond the black stump: rapid reviews of health research issues affecting regional, rural and remote Australia.

Med J Aust. 2020-12

[7]
The future of Cochrane Neonatal.

Early Hum Dev. 2020-11

[8]
Artificial intelligence for HPV status prediction based on disease-specific images in head and neck cancer: A systematic review and meta-analysis.

J Med Virol. 2023-9

[9]
Application of Artificial Intelligence in Community-Based Primary Health Care: Systematic Scoping Review and Critical Appraisal.

J Med Internet Res. 2021-9-3

[10]
Artificial intelligence and its impact on the domains of universal health coverage, health emergencies and health promotion: An overview of systematic reviews.

Int J Med Inform. 2022-10

引用本文的文献

[1]
Artificial Intelligence in the Diagnosis of Tongue Cancer: A Systematic Review with Meta-Analysis.

Biomedicines. 2025-7-30

[2]
Medical Education Strategies for Otolaryngology in the Online World and the Role of Podcasting.

Laryngoscope Investig Otolaryngol. 2025-8-7

[3]
A bibliometric analysis reveals a dynamic growth in the use of artificial intelligence in oral cancer research over three decades.

Discov Oncol. 2025-7-28

[4]
Cervical cancer prediction using machine learning models based on routine blood analysis.

Sci Rep. 2025-7-2

[5]
Comparison of clinical nasal endoscopy, optical biopsy, and artificial intelligence in early diagnosis and treatment planning in laryngeal cancer: a prospective observational study.

Front Oncol. 2025-6-10

[6]
Three-dimensional in vitro models in head and neck cancer: current trends and applications.

Med Oncol. 2025-5-5

[7]
The Limitations of Artificial Intelligence in Head and Neck Oncology.

Adv Ther. 2025-6

[8]
Machine learning in risk assessment for microvascular head and neck surgery.

Eur Arch Otorhinolaryngol. 2025-6

[9]
A systematic review of the role of artificial intelligence in automating computed tomography-based adaptive radiotherapy for head and neck cancer.

Phys Imaging Radiat Oncol. 2025-2-14

[10]
American Academy of Otolaryngology-Head and Neck Surgery (AAO-HNS) Report on Artificial Intelligence.

Otolaryngol Head Neck Surg. 2025-2

本文引用的文献

[1]
Artificial intelligence in head and neck cancer diagnosis.

J Pathol Inform. 2022-11-8

[2]
Current Applications of Artificial Intelligence to Classify Cervical Lymph Nodes in Patients with Head and Neck Squamous Cell Carcinoma-A Systematic Review.

Cancers (Basel). 2022-11-2

[3]
Radiomics-based machine learning for the diagnosis of lymph node metastases in patients with head and neck cancer: Systematic review.

Head Neck. 2023-2

[4]
An interpretable machine learning prognostic system for risk stratification in oropharyngeal cancer.

Int J Med Inform. 2022-12

[5]
Accuracy of artificial intelligence-assisted detection of Oral Squamous Cell Carcinoma: A systematic review and meta-analysis.

Crit Rev Oncol Hematol. 2022-10

[6]
Efficacy of Artificial Intelligence-Assisted Discrimination of Oral Cancerous Lesions from Normal Mucosa Based on the Oral Mucosal Image: A Systematic Review and Meta-Analysis.

Cancers (Basel). 2022-7-19

[7]
Deep Machine Learning for Oral Cancer: From Precise Diagnosis to Precision Medicine.

Front Oral Health. 2022-1-11

[8]
Machine Learning Algorithms as a Computer-Assisted Decision Tool for Oral Cancer Prognosis and Management Decisions: A Systematic Review.

ORL J Otorhinolaryngol Relat Spec. 2022

[9]
Machine Learning for Head and Neck Cancer: A Safe Bet?-A Clinically Oriented Systematic Review for the Radiation Oncologist.

Front Oncol. 2021-11-18

[10]
The application of radiomics in laryngeal cancer.

Br J Radiol. 2021-12

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索