文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

基于影像组学的机器学习用于头颈部癌患者淋巴结转移的诊断:系统评价

Radiomics-based machine learning for the diagnosis of lymph node metastases in patients with head and neck cancer: Systematic review.

作者信息

Giannitto Caterina, Mercante Giuseppe, Ammirabile Angela, Cerri Luca, De Giorgi Teresa, Lofino Ludovica, Vatteroni Giulia, Casiraghi Elena, Marra Silvia, Esposito Andrea Alessandro, De Virgilio Armando, Costantino Andrea, Ferreli Fabio, Savevski Victor, Spriano Giuseppe, Balzarini Luca

机构信息

Department of Diagnostic Radiology, IRCCS Humanitas Research Hospital, Milan, Italy.

Department of Biomedical Sciences, Humanitas University, Milan, Italy.

出版信息

Head Neck. 2023 Feb;45(2):482-491. doi: 10.1002/hed.27239. Epub 2022 Nov 8.


DOI:10.1002/hed.27239
PMID:36349545
Abstract

Machine learning (ML) is increasingly used to detect lymph node (LN) metastases in head and neck (H&N) carcinoma. We systematically reviewed the literature on radiomic-based ML for the detection of pathological LNs in H&N cancer. A systematic review was conducted in PubMed, EMBASE, and the Cochrane Library. Baseline study characteristics and methodological quality items (modeling, performance evaluation, clinical utility, and transparency items) were extracted and evaluated. The qualitative synthesis is presented using descriptive statistics. Seven studies were included in this study. Overall, the methodological quality items were generally favorable for modeling (57% of studies). The studies were mostly unsuccessful in terms of transparency (85.7%), evaluation of clinical utility (71.3%), and assessment of generalizability employing independent or external validation (72.5%). ML may be able to predict LN metastases in H&N cancer. Further studies are warranted to improve the generalizability assessment, clinical utility evaluation, and transparency items.

摘要

机器学习(ML)越来越多地用于检测头颈(H&N)癌中的淋巴结(LN)转移。我们系统地回顾了基于放射组学的ML在检测H&N癌病理性LN方面的文献。在PubMed、EMBASE和Cochrane图书馆进行了系统回顾。提取并评估了基线研究特征和方法学质量项目(建模、性能评估、临床效用和透明度项目)。使用描述性统计进行定性综合分析。本研究纳入了七项研究。总体而言,方法学质量项目在建模方面普遍良好(57%的研究)。这些研究在透明度(85.7%)、临床效用评估(71.3%)以及采用独立或外部验证的可推广性评估(72.5%)方面大多未成功。ML或许能够预测H&N癌中的LN转移。有必要进行进一步研究以改善可推广性评估、临床效用评估和透明度项目。

相似文献

[1]
Radiomics-based machine learning for the diagnosis of lymph node metastases in patients with head and neck cancer: Systematic review.

Head Neck. 2023-2

[2]
Systemic treatments for metastatic cutaneous melanoma.

Cochrane Database Syst Rev. 2018-2-6

[3]
Artificial intelligence for the diagnosis of lymph node metastases in patients with abdominopelvic malignancy: A systematic review and meta-analysis.

Artif Intell Med. 2021-3

[4]
Cost-effectiveness of using prognostic information to select women with breast cancer for adjuvant systemic therapy.

Health Technol Assess. 2006-9

[5]
A rapid and systematic review of the clinical effectiveness and cost-effectiveness of topotecan for ovarian cancer.

Health Technol Assess. 2001

[6]
External validation of a machine learning prediction model for massive blood loss during surgery for spinal metastases: a multi-institutional study using 880 patients.

Spine J. 2025-7

[7]
Eliciting adverse effects data from participants in clinical trials.

Cochrane Database Syst Rev. 2018-1-16

[8]
Clinical benefits of deep learning-assisted ultrasound in predicting lymph node metastasis in pancreatic cancer patients.

Future Oncol. 2025-6-23

[9]
Magnetic resonance perfusion for differentiating low-grade from high-grade gliomas at first presentation.

Cochrane Database Syst Rev. 2018-1-22

[10]
Bisphosphonates for breast cancer.

Cochrane Database Syst Rev. 2005-7-20

引用本文的文献

[1]
Micrometastasis and Isolated Tumor Cells in Oral Squamous Cell Carcinoma: Refining Nodal Staging with Emerging Technologies.

Head Neck Pathol. 2025-9-2

[2]
Nodal Involvement in Prostate Cancer: Implications for Diagnosis and Treatment.

Cureus. 2025-7-23

[3]
Multimodal Deep Learning for Stage Classification of Head and Neck Cancer Using Masked Autoencoders and Vision Transformers with Attention-Based Fusion.

Cancers (Basel). 2025-6-24

[4]
Early Detection of Lymph Node Metastasis Using Primary Head and Neck Cancer Computed Tomography and Fluorescence Lifetime Imaging.

Diagnostics (Basel). 2024-9-23

[5]
FDG PET-CT for the Detection of Occult Nodal Metastases in Head and Neck Cancer: A Systematic Review and Meta-Analysis.

Cancers (Basel). 2024-8-24

[6]
The Use of Artificial Intelligence in Head and Neck Cancers: A Multidisciplinary Survey.

J Pers Med. 2024-3-25

[7]
Radiomics-Based Analysis in the Prediction of Occult Lymph Node Metastases in Patients with Oral Cancer: A Systematic Review.

J Clin Med. 2023-7-28

[8]
The predictive value of machine learning and nomograms for lymph node metastasis of prostate cancer: a systematic review and meta-analysis.

Prostate Cancer Prostatic Dis. 2023-9

[9]
Artificial Intelligence in Head and Neck Cancer: A Systematic Review of Systematic Reviews.

Adv Ther. 2023-8

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索