Suppr超能文献

蛋白质-配体短氢键的化学特征及机器学习辅助预测

Chemical Features and Machine Learning Assisted Predictions of Protein-Ligand Short Hydrogen Bonds.

作者信息

Zhou Shengmin, Liu Yuanhao, Wang Sijian, Wang Lu

机构信息

YDS Pharmatech, Inc., Albany, NY 12226, USA.

Department of Statistics, Institute for Quantitative Biomedicine, Rutgers University, Piscataway, NJ 08854, USA.

出版信息

Res Sq. 2023 May 15:rs.3.rs-2895170. doi: 10.21203/rs.3.rs-2895170/v1.

Abstract

There are continuous efforts to elucidate the structure and biological functions of short hydrogen bonds (SHBs), whose donor and acceptor heteroatoms reside more than 0.3 A closer than the sum of their van der Waals radii. In this work, we evaluate 1070 atomic-resolution protein structures and characterize the common chemical features of SHBs formed between the side chains of amino acids and small molecule ligands. We then develop a machine learning assisted prediction of protein-ligand SHBs (MAPSHB-Ligand) model and reveal that the types of amino acids and ligand functional groups as well as the sequence of neighboring residues are essential factors that determine the class of protein-ligand hydrogen bonds. The MAPSHB-Ligand model and its implementation on our web server enable the effective identification of protein-ligand SHBs in proteins, which will facilitate the design of biomolecules and ligands that exploit these close contacts for enhanced functions.

摘要

人们一直在不断努力阐明短氢键(SHB)的结构和生物学功能,其供体和受体杂原子之间的距离比它们范德华半径之和近0.3埃以上。在这项工作中,我们评估了1070个原子分辨率的蛋白质结构,并表征了氨基酸侧链与小分子配体之间形成的短氢键的常见化学特征。然后,我们开发了一种机器学习辅助的蛋白质-配体短氢键预测(MAPSHB-Ligand)模型,并揭示氨基酸类型、配体官能团以及相邻残基的序列是决定蛋白质-配体氢键类型的关键因素。MAPSHB-Ligand模型及其在我们网络服务器上的应用能够有效识别蛋白质中的蛋白质-配体短氢键,这将有助于设计利用这些紧密接触来增强功能的生物分子和配体。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/d489/10246099/96d65eb30429/nihpp-rs2895170v1-f0001.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验