Suppr超能文献

利用单细胞基因组学数据研究细胞的随机系统生物学。

Studying stochastic systems biology of the cell with single-cell genomics data.

作者信息

Gorin Gennady, Vastola John J, Pachter Lior

机构信息

Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, CA, 91125.

Department of Neurobiology, Harvard Medical School, Boston, MA, 02115.

出版信息

bioRxiv. 2023 May 29:2023.05.17.541250. doi: 10.1101/2023.05.17.541250.

Abstract

Recent experimental developments in genome-wide RNA quantification hold considerable promise for systems biology. However, rigorously probing the biology of living cells requires a unified mathematical framework that accounts for single-molecule biological stochasticity in the context of technical variation associated with genomics assays. We review models for a variety of RNA transcription processes, as well as the encapsulation and library construction steps of microfluidics-based single-cell RNA sequencing, and present a framework to integrate these phenomena by the manipulation of generating functions. Finally, we use simulated scenarios and biological data to illustrate the implications and applications of the approach.

摘要

全基因组RNA定量方面的最新实验进展为系统生物学带来了巨大希望。然而,要严格探究活细胞的生物学特性,需要一个统一的数学框架,该框架要在与基因组学检测相关的技术变异背景下考虑单分子生物随机性。我们综述了各种RNA转录过程的模型,以及基于微流控的单细胞RNA测序的封装和文库构建步骤,并提出了一个通过生成函数的操作来整合这些现象的框架。最后,我们使用模拟场景和生物学数据来说明该方法的意义和应用。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/d2fe/10245677/4553a1cf9335/nihpp-2023.05.17.541250v2-f0001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验