文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

基于 CellBender 的无监督去除液滴式单细胞实验系统背景噪声。

Unsupervised removal of systematic background noise from droplet-based single-cell experiments using CellBender.

机构信息

Data Sciences Platform, Broad Institute of MIT and Harvard, Cambridge, MA, USA.

Precision Cardiology Laboratory (PCL), Broad Institute of MIT and Harvard, Cambridge, MA, USA.

出版信息

Nat Methods. 2023 Sep;20(9):1323-1335. doi: 10.1038/s41592-023-01943-7. Epub 2023 Aug 7.


DOI:10.1038/s41592-023-01943-7
PMID:37550580
Abstract

Droplet-based single-cell assays, including single-cell RNA sequencing (scRNA-seq), single-nucleus RNA sequencing (snRNA-seq) and cellular indexing of transcriptomes and epitopes by sequencing (CITE-seq), generate considerable background noise counts, the hallmark of which is nonzero counts in cell-free droplets and off-target gene expression in unexpected cell types. Such systematic background noise can lead to batch effects and spurious differential gene expression results. Here we develop a deep generative model based on the phenomenology of noise generation in droplet-based assays. The proposed model accurately distinguishes cell-containing droplets from cell-free droplets, learns the background noise profile and provides noise-free quantification in an end-to-end fashion. We implement this approach in the scalable and robust open-source software package CellBender. Analysis of simulated data demonstrates that CellBender operates near the theoretically optimal denoising limit. Extensive evaluations using real datasets and experimental benchmarks highlight enhanced concordance between droplet-based single-cell data and established gene expression patterns, while the learned background noise profile provides evidence of degraded or uncaptured cell types.

摘要

基于液滴的单细胞分析,包括单细胞 RNA 测序(scRNA-seq)、单核 RNA 测序(snRNA-seq)和通过测序对转录组和表位进行细胞索引(CITE-seq),会产生大量的背景噪声计数,其特征是无细胞液滴中的非零计数和预期细胞类型中的非靶向基因表达。这种系统性的背景噪声可能导致批次效应和虚假的差异基因表达结果。在这里,我们基于液滴分析中噪声产生的现象学,开发了一种深度生成模型。所提出的模型能够准确地区分含有细胞的液滴和无细胞的液滴,学习背景噪声分布,并以端到端的方式提供无噪声的定量。我们在可扩展且强大的开源软件包 CellBender 中实现了这种方法。模拟数据分析表明,CellBender 接近理论上的最优去噪极限。使用真实数据集和实验基准的广泛评估突出了基于液滴的单细胞数据与既定基因表达模式之间的增强一致性,而学习到的背景噪声分布则提供了细胞类型退化或未捕获的证据。

相似文献

[1]
Unsupervised removal of systematic background noise from droplet-based single-cell experiments using CellBender.

Nat Methods. 2023-9

[2]
The effect of background noise and its removal on the analysis of single-cell expression data.

Genome Biol. 2023-6-19

[3]
Normalizing and denoising protein expression data from droplet-based single cell profiling.

Nat Commun. 2022-4-19

[4]
CITEViz: interactively classify cell populations in CITE-Seq via a flow cytometry-like gating workflow using R-Shiny.

BMC Bioinformatics. 2024-4-2

[5]
Automated quality control and cell identification of droplet-based single-cell data using dropkick.

Genome Res. 2021-10

[6]
Advantages of Single-Nucleus over Single-Cell RNA Sequencing of Adult Kidney: Rare Cell Types and Novel Cell States Revealed in Fibrosis.

J Am Soc Nephrol. 2018-12-3

[7]
Propensity score matching enables batch-effect-corrected imputation in single-cell RNA-seq analysis.

Brief Bioinform. 2022-7-18

[8]
scGGAN: single-cell RNA-seq imputation by graph-based generative adversarial network.

Brief Bioinform. 2023-3-19

[9]
FastCAR: fast correction for ambient RNA to facilitate differential gene expression analysis in single-cell RNA-sequencing datasets.

BMC Genomics. 2023-11-29

[10]
SiftCell: A robust framework to detect and isolate cell-containing droplets from single-cell RNA sequence reads.

Cell Syst. 2023-7-19

引用本文的文献

[1]
Mature and migratory dendritic cells promote immune infiltration and response to anti-PD-1 checkpoint blockade in metastatic melanoma.

Nat Commun. 2025-9-1

[2]
Multi-omic identification of perineurial hyperplasia and lipid-associated nerve macrophages in human polyneuropathies.

Nat Commun. 2025-8-23

[3]
A clonally expanded nodal T-cell population diagnosed as T-cell lymphoma after CAR-T therapy.

Nat Commun. 2025-8-12

[4]
Developmental Stage-Dependent Transcriptomic Responses to Neonatal Intraventricular Hemorrhage.

bioRxiv. 2025-7-17

[5]
Inferring Phenotypes of Copy Number Clones in Cancer Populations Using TreeAlign.

Methods Mol Biol. 2025

[6]
PPARG governs adipogenic differentiation and cell state plasticity in well-differentiated and dedifferentiated liposarcoma.

bioRxiv. 2025-7-21

[7]
CytoAnalyst web platform facilitates comprehensive single cell RNA sequencing analysis.

Sci Rep. 2025-8-6

[8]
Targeting CyclinD1-CDK6 to Mitigate Senescence-Driven Inflammation and Age-Associated Functional Decline.

bioRxiv. 2025-8-2

[9]
Causes Cerebral Hemorrhage and Hydrocephalus by Widespread Disruption of Cell-Type-Specific Neurodevelopmental Gene Networks.

bioRxiv. 2025-8-1

[10]
The spatial landscape of glial pathology and T cell response in Parkinson's disease substantia nigra.

Nat Commun. 2025-8-4

本文引用的文献

[1]
Single-nucleus profiling of human dilated and hypertrophic cardiomyopathy.

Nature. 2022-8

[2]
Scalable single-cell RNA sequencing from full transcripts with Smart-seq3xpress.

Nat Biotechnol. 2022-10

[3]
Single-nucleus cross-tissue molecular reference maps toward understanding disease gene function.

Science. 2022-5-13

[4]
Statistics or biology: the zero-inflation controversy about scRNA-seq data.

Genome Biol. 2022-1-21

[5]
Identification of a regulatory pathway inhibiting adipogenesis via RSPO2.

Nat Metab. 2022-1

[6]
A single-cell transcriptomic landscape of the lungs of patients with COVID-19.

Nat Cell Biol. 2021-12

[7]
Molecular logic of cellular diversification in the mouse cerebral cortex.

Nature. 2021-7

[8]
Tutorial: guidelines for annotating single-cell transcriptomic maps using automated and manual methods.

Nat Protoc. 2021-6

[9]
COVID-19 tissue atlases reveal SARS-CoV-2 pathology and cellular targets.

Nature. 2021-7

[10]
A molecular single-cell lung atlas of lethal COVID-19.

Nature. 2021-7

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索