Suppr超能文献

神经行为损伤可预测蛛网膜下腔出血大鼠模型中的特定脑损伤。

Neurobehavioral impairments predict specific cerebral damage in rat model of subarachnoid hemorrhage.

作者信息

Lynch Daniel G, Shah Kevin A, Powell Keren, Wadolowski Steven, Ayol Willians Tambo, Strohl Joshua J, Unadkat Prashin, Eidelberg David, Huerta Patricio T, Li Chunyan

机构信息

Donald & Barbara Zucker School of Medicine at Hofstra/Northwell.

North Shore University Hospital.

出版信息

Res Sq. 2023 May 19:rs.3.rs-2943917. doi: 10.21203/rs.3.rs-2943917/v1.

Abstract

Subarachnoid hemorrhage (SAH) is a severe form of stroke that can cause unpredictable and diffuse cerebral damage, which is difficult to detect until it becomes irreversible. Therefore, there is a need for a reliable method to identify dysfunctional regions and initiate treatment before permanent damage occurs. Neurobehavioral assessments have been suggested as a possible tool to detect and approximately localize dysfunctional cerebral regions. In this study, we hypothesized that a neurobehavioral assessment battery could be a sensitive and specific early warning for damage in discrete cerebral regions following SAH. To test this hypothesis, a behavioral battery was employed at multiple time points after SAH induced via an endovascular perforation, and brain damage was confirmed via postmortem histopathological analysis. Our results demonstrate that impairment of sensorimotor function accurately predict damage in the cerebral cortex (AUC: 0.905; sensitivity: 81.8%; specificity: 90.9%) and striatum (AUC: 0.913; sensitivity: 90.1%; specificity: 100%), while impaired novel object recognition is a more accurate indicator of damage to the hippocampus (AUC: 0.902; sensitivity: 74.1%; specificity: 83.3%) than impaired reference memory (AUC: 0.746; sensitivity: 72.2%; specificity: 58.0%). Tests for anxiety-like and depression-like behaviors predict damage to the amygdala (AUC: 0.900; sensitivity: 77.0%; specificity: 81.7%) and thalamus (AUC: 0.963; sensitivity: 86.3%; specificity: 87.8%), respectively. This study suggests that recurring behavioral testing can accurately predict damage in specific brain regions, which could be developed into a clinical battery for early detection of SAH damage in humans, potentially improving early treatment and outcomes.

摘要

蛛网膜下腔出血(SAH)是一种严重的中风形式,可导致不可预测的弥漫性脑损伤,在其变得不可逆转之前很难被检测到。因此,需要一种可靠的方法来识别功能失调区域,并在永久性损伤发生之前开始治疗。神经行为评估已被建议作为检测和大致定位功能失调脑区的一种可能工具。在本研究中,我们假设神经行为评估组合可能是SAH后离散脑区损伤的敏感且特异的早期预警指标。为了验证这一假设,在通过血管内穿孔诱导SAH后的多个时间点采用了行为组合测试,并通过死后组织病理学分析确认脑损伤。我们的结果表明,感觉运动功能受损能准确预测大脑皮层(曲线下面积:0.905;敏感性:81.8%;特异性:90.9%)和纹状体(曲线下面积:0.913;敏感性:90.1%;特异性:100%)的损伤,而新颖物体识别受损比参考记忆受损(曲线下面积:0.746;敏感性:72.2%;特异性:58.0%)更准确地指示海马体损伤(曲线下面积:0.902;敏感性:74.1%;特异性:83.3%)。焦虑样和抑郁样行为测试分别预测杏仁核(曲线下面积:0.900;敏感性:77.0%;特异性:81.7%)和丘脑(曲线下面积:0.963;敏感性:86.3%;特异性:87.8%)的损伤。本研究表明,反复进行行为测试可以准确预测特定脑区的损伤,这可发展为一种临床组合测试,用于早期检测人类SAH损伤,有可能改善早期治疗和预后。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/6c75/10246236/0f30e2cc6dc6/nihpp-rs2943917v1-f0001.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验