Hill David P, Drabkin Harold J, Smith Cynthia L, Van Auken Kimberly M, D'Eustachio Peter
The Jackson Laboratory, Bar Harbor ME 04609 USA.
Division of Biology and Biological Engineering, California Institute of Technology, Pasadena CA 91125 USA.
bioRxiv. 2023 Jul 13:2023.05.22.541760. doi: 10.1101/2023.05.22.541760.
Gene inactivation can affect the process(es) in which that gene acts and causally downstream ones, yielding diverse mutant phenotypes. Identifying the genetic pathways resulting in a given phenotype helps us understand how individual genes interact in a functional network. Computable representations of biological pathways include detailed process descriptions in the Reactome Knowledgebase, and causal activity flows between molecular functions in Gene Ontology-Causal Activity Models (GO-CAMs). A computational process has been developed to convert Reactome pathways to GO-CAMs. Laboratory mice are widely used models of normal and pathological human processes. We have converted human Reactome GO-CAMs to orthologous mouse GO-CAMs, as a resource to transfer pathway knowledge between humans and model organisms. These mouse GO-CAMs allowed us to define sets of genes that function in a connected and well-defined way. To test whether individual genes from well-defined pathways result in similar and distinguishable phenotypes, we used the genes in our pathway models to cross-query mouse phenotype annotations in the Mouse Genome Database (MGD). Using GO-CAM representations of two related but distinct pathways, gluconeogenesis and glycolysis, we can identify causal paths in gene networks that give rise to discrete phenotypic outcomes for perturbations of glycolysis and gluconeogenesis. The accurate and detailed descriptions of gene interactions recovered in this analysis of well-studied processes suggest that this strategy can be applied to less well-understood processes in less well-studied model systems to predict phenotypic outcomes of novel gene variants and to identify potential gene targets in altered processes.
基因失活可影响该基因所作用的过程以及因果关系上的下游过程,从而产生多样的突变表型。识别导致特定表型的遗传途径有助于我们理解单个基因在功能网络中的相互作用方式。生物途径的可计算表示包括Reactome知识库中的详细过程描述,以及基因本体因果活动模型(GO-CAMs)中分子功能之间的因果活动流。已开发出一种计算过程,可将Reactome途径转换为GO-CAMs。实验室小鼠是正常和病理性人类过程的广泛使用的模型。我们已将人类Reactome GO-CAMs转换为直系同源的小鼠GO-CAMs,作为在人类和模式生物之间传递途径知识的资源。这些小鼠GO-CAMs使我们能够定义以连贯且明确的方式发挥作用的基因集。为了测试来自明确途径的单个基因是否会导致相似且可区分的表型,我们使用途径模型中的基因交叉查询小鼠基因组数据库(MGD)中的小鼠表型注释。使用糖异生和糖酵解这两个相关但不同途径的GO-CAM表示,我们可以识别基因网络中的因果路径,这些路径会因糖酵解和糖异生的扰动而产生离散的表型结果。在对深入研究的过程进行的这项分析中恢复的基因相互作用的准确而详细的描述表明,这种策略可应用于研究较少的模型系统中了解较少的过程,以预测新基因变体的表型结果,并识别改变过程中的潜在基因靶点。