Suppr超能文献

基因本体因果活动模型所代表的生化途径识别出由于途径中的突变而导致的不同表型。

Biochemical pathways represented by Gene Ontology-Causal Activity Models identify distinct phenotypes resulting from mutations in pathways.

机构信息

The Jackson Laboratory, Bar Harbor, ME 04609, USA.

Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA 91125, USA.

出版信息

Genetics. 2023 Oct 4;225(2). doi: 10.1093/genetics/iyad152.

Abstract

Gene inactivation can affect the process(es) in which that gene acts and causally downstream ones, yielding diverse mutant phenotypes. Identifying the genetic pathways resulting in a given phenotype helps us understand how individual genes interact in a functional network. Computable representations of biological pathways include detailed process descriptions in the Reactome Knowledgebase and causal activity flows between molecular functions in Gene Ontology-Causal Activity Models (GO-CAMs). A computational process has been developed to convert Reactome pathways to GO-CAMs. Laboratory mice are widely used models of normal and pathological human processes. We have converted human Reactome GO-CAMs to orthologous mouse GO-CAMs, as a resource to transfer pathway knowledge between humans and model organisms. These mouse GO-CAMs allowed us to define sets of genes that function in a causally connected way. To demonstrate that individual variant genes from connected pathways result in similar but distinguishable phenotypes, we used the genes in our pathway models to cross-query mouse phenotype annotations in the Mouse Genome Database (MGD). Using GO-CAM representations of 2 related but distinct pathways, gluconeogenesis and glycolysis, we show that individual causal paths in gene networks give rise to discrete phenotypic outcomes resulting from perturbations of glycolytic and gluconeogenic genes. The accurate and detailed descriptions of gene interactions recovered in this analysis of well-studied processes suggest that this strategy can be applied to less well-understood processes in less well-studied model systems to predict phenotypic outcomes of novel gene variants and to identify potential gene targets in altered processes.

摘要

基因失活会影响该基因作用的过程及其下游的因果过程,从而产生多种突变表型。确定导致特定表型的遗传途径有助于我们了解单个基因如何在功能网络中相互作用。可计算的生物途径表示包括 Reactome Knowledgebase 中的详细过程描述以及基因本体论因果活动模型 (GO-CAMs) 中分子功能之间的因果活动流。已经开发了一种计算过程来将 Reactome 途径转换为 GO-CAMs。实验室小鼠是正常和病理人类过程的广泛使用模型。我们已经将人类 Reactome GO-CAMs 转换为同源小鼠 GO-CAMs,作为在人类和模型生物之间转移途径知识的资源。这些小鼠 GO-CAMs 使我们能够定义以因果关系方式起作用的基因集。为了证明来自相关途径的单个变体基因导致相似但可区分的表型,我们使用途径模型中的基因在 Mouse Genome Database (MGD) 中交叉查询小鼠表型注释。使用糖异生和糖酵解这两个相关但不同的途径的 GO-CAM 表示,我们表明基因网络中的单个因果路径会导致由于糖酵解和糖异生基因的扰动而产生离散的表型结果。对经过充分研究的过程进行的这种分析中恢复的基因相互作用的准确和详细描述表明,该策略可以应用于在研究较少的模型系统中研究较少的过程,以预测新型基因变异的表型结果,并识别改变过程中的潜在基因靶标。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/67be/10550311/2b202cb5759c/iyad152f1.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验