Suppr超能文献

MRI去标识化对脑部分割影响的可重复性评估

A reproducibility evaluation of the effects of MRI defacing on brain segmentation.

作者信息

Gao Chenyu, Landman Bennett A, Prince Jerry L, Carass Aaron

机构信息

Vanderbilt University, Department of Electrical and Computer Engineering, Nashville, Tennessee, 37235.

The Johns Hopkins University, Department of Electrical and Computer Engineering, Baltimore, Maryland, 21218.

出版信息

medRxiv. 2023 May 21:2023.05.15.23289995. doi: 10.1101/2023.05.15.23289995.

Abstract

PURPOSE

Recent advances in magnetic resonance (MR) scanner quality and the rapidly improving nature of facial recognition software have necessitated the introduction of MR defacing algorithms to protect patient privacy. As a result, there are a number of MR defacing algorithms available to the neuroimaging community, with several appearing in just the last five years. While some qualities of these defacing algorithms, such as patient identifiability, have been explored in previous works, the potential impact of defacing on neuroimage processing has yet to be explored.

APPROACH

We qualitatively evaluate eight MR defacing algorithms on 179 subjects from the OASIS-3 cohort and the 21 subjects from the Kirby-21 dataset. We also evaluate the effects of defacing on two neuroimaging pipelines-SLANT and FreeSurfer-by comparing the segmentation consistency between the original and defaced images.

RESULTS

Defacing can alter brain segmentation and even lead to catastrophic failures, which are more frequent with some algorithms such as , and . Compared to FreeSurfer, SLANT is less affected by defacing. On outputs that pass the quality check, the effects of defacing are less pronounced than those of rescanning, as measured by the Dice similarity coefficient.

CONCLUSIONS

The effects of defacing are noticeable and should not be disregarded. Extra attention, in particular, should be paid to the possibility of catastrophic failures. It is crucial to adopt a robust defacing algorithm and perform a thorough quality check before releasing defaced datasets. To improve the reliability of analysis in scenarios involving defaced MRIs, it's encouraged to include multiple brain segmentation pipelines.

摘要

目的

磁共振(MR)扫描仪质量的最新进展以及面部识别软件的迅速发展,使得必须引入MR去识别算法以保护患者隐私。因此,神经影像学界有多种MR去识别算法可供使用,其中有几种是在过去五年中才出现的。虽然之前的研究已经探讨了这些去识别算法的一些特性,如患者可识别性,但去识别对面部神经影像处理的潜在影响尚未得到研究。

方法

我们对来自OASIS - 3队列的179名受试者和Kirby - 21数据集中的21名受试者,定性评估了八种MR去识别算法。我们还通过比较原始图像和去识别图像之间的分割一致性,评估了去识别对两种神经影像处理流程——SLANT和FreeSurfer的影响。

结果

去识别会改变脑部分割,甚至导致灾难性失败,某些算法(如 、 和 )出现这种情况的频率更高。与FreeSurfer相比,SLANT受去识别的影响较小。在通过质量检查的输出结果上,通过骰子相似系数衡量,去识别的影响不如重新扫描的影响明显。

结论

去识别的影响是显著的,不应被忽视。尤其应格外关注灾难性失败的可能性。在发布去识别数据集之前,采用强大的去识别算法并进行全面的质量检查至关重要。为提高在涉及去识别MRI的场景中的分析可靠性,鼓励纳入多个脑部分割流程。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/ca5a/10246049/c7d00da33570/nihpp-2023.05.15.23289995v1-f0001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验