Sahlsten Jaakko, Wahid Kareem A, Glerean Enrico, Jaskari Joel, Naser Mohamed A, He Renjie, Kann Benjamin H, Mäkitie Antti, Fuller Clifton D, Kaski Kimmo
Department of Computer Science, Aalto University School of Science, Espoo, Finland.
Department of Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, United States.
Front Oncol. 2023 Feb 28;13:1120392. doi: 10.3389/fonc.2023.1120392. eCollection 2023.
Demand for head and neck cancer (HNC) radiotherapy data in algorithmic development has prompted increased image dataset sharing. Medical images must comply with data protection requirements so that re-use is enabled without disclosing patient identifiers. Defacing, i.e., the removal of facial features from images, is often considered a reasonable compromise between data protection and re-usability for neuroimaging data. While defacing tools have been developed by the neuroimaging community, their acceptability for radiotherapy applications have not been explored. Therefore, this study systematically investigated the impact of available defacing algorithms on HNC organs at risk (OARs).
A publicly available dataset of magnetic resonance imaging scans for 55 HNC patients with eight segmented OARs (bilateral submandibular glands, parotid glands, level II neck lymph nodes, level III neck lymph nodes) was utilized. Eight publicly available defacing algorithms were investigated: afni_refacer, DeepDefacer, defacer, fsl_deface, mask_face, mri_deface, pydeface, and quickshear. Using a subset of scans where defacing succeeded (N=29), a 5-fold cross-validation 3D U-net based OAR auto-segmentation model was utilized to perform two main experiments: 1.) comparing original and defaced data for training when evaluated on original data; 2.) using original data for training and comparing the model evaluation on original and defaced data. Models were primarily assessed using the Dice similarity coefficient (DSC).
Most defacing methods were unable to produce any usable images for evaluation, while mask_face, fsl_deface, and pydeface were unable to remove the face for 29%, 18%, and 24% of subjects, respectively. When using the original data for evaluation, the composite OAR DSC was statistically higher (p ≤ 0.05) for the model trained with the original data with a DSC of 0.760 compared to the mask_face, fsl_deface, and pydeface models with DSCs of 0.742, 0.736, and 0.449, respectively. Moreover, the model trained with original data had decreased performance (p ≤ 0.05) when evaluated on the defaced data with DSCs of 0.673, 0.693, and 0.406 for mask_face, fsl_deface, and pydeface, respectively.
Defacing algorithms may have a significant impact on HNC OAR auto-segmentation model training and testing. This work highlights the need for further development of HNC-specific image anonymization methods.
算法开发中对头颈部癌(HNC)放疗数据的需求促使图像数据集共享增加。医学图像必须符合数据保护要求,以便在不披露患者标识符的情况下实现再利用。去脸,即从图像中去除面部特征,通常被认为是神经成像数据在数据保护和再利用之间的合理折衷。虽然神经成像社区已经开发出去脸工具,但尚未探索它们在放疗应用中的可接受性。因此,本研究系统地调查了可用去脸算法对HNC危及器官(OARs)的影响。
利用一个公开可用的数据集,该数据集包含55例HNC患者的磁共振成像扫描,其中有八个分割的OARs(双侧颌下腺、腮腺、II级颈部淋巴结、III级颈部淋巴结)。研究了八种公开可用的去脸算法:afni_refacer、DeepDefacer、defacer、fsl_deface、mask_face、mri_deface、pydeface和quickshear。使用去脸成功的扫描子集(N = 29),基于5折交叉验证的3D U-net的OAR自动分割模型被用于进行两个主要实验:1.)在原始数据上评估时,比较原始数据和去脸后的数据用于训练;2.)使用原始数据进行训练,并比较在原始数据和去脸后的数据上的模型评估。模型主要使用骰子相似系数(DSC)进行评估。
大多数去脸方法无法生成任何可用图像进行评估,而mask_face、fsl_deface和pydeface分别有29%、18%和24%的受试者无法去除面部。当使用原始数据进行评估时,使用原始数据训练的模型的复合OAR DSC在统计学上更高(p≤0.05),DSC为0.760,而mask_face、fsl_deface和pydeface模型的DSC分别为0.742、0.736和0.449。此外,当在去脸后的数据上评估时,使用原始数据训练的模型性能下降(p≤0.05),mask_face、fsl_deface和pydeface的DSC分别为0.673、0.693和0.406。
去脸算法可能对HNC OAR自动分割模型的训练和测试有重大影响。这项工作强调了进一步开发HNC特定图像匿名化方法的必要性。